Open image in new window -sets in the products of zero-dimensional compact abelian groups

  • Mikhail PlotnikovEmail author
Research Article


Let Open image in new window be the (finite) Cartesian power of a zero-dimensional compact abelian group and \( {\varvec{\Gamma }} = \{ {\varvec{\gamma }} \}\) be the group of characters of Open image in new window . Examples of Open image in new window - and Open image in new window for the system \(\{ {\varvec{\gamma }} \}\) are constructed.


Zero-dimensional compact abelian groups Characters Uniqueness Open image in new window-sets Open image in new window-sets Restricted rectangular convergence 

Mathematics Subject Classification

43A75 40B05 42C25 



  1. 1.
    Agaev, G.N., Vilenkin, N.Ya., Dzhafarli, G.M., Rubinstein, A.I.: Multiplicative Systems of Functions and Harmonic Analysis on Zero-dimensional Groups. Ehlm, Baku (1981) (in Russian)Google Scholar
  2. 2.
    Aubertin, B.: Algebraic elements and sets of uniqueness in the group integers of a \(p\)-series field. Canad. Math. Bull. 29(2), 177–184 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Gogoladze, L.D.: On the problem of reconstructing the coefficients of convergent multiple function series. Izv. Math. 72(2), 283–290 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Golubov, B., Efimov, A., Skvortsov, V.: Walsh Series and Transforms. Mathematics and its Applications (Soviet Series), vol. 64. Kluwer, Dordrecht (1991)CrossRefzbMATHGoogle Scholar
  5. 5.
    Grubb, D.J.: Sets of uniqueness in compact, 0-dimensional, metric groups. Trans. Amer. Math. Soc. 301(1), 239–249 (1987)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Grubb, D.J.: Summation methods and uniqueness in Vilenkin groups. Trans. Amer. Math. Soc. 102(3), 556–558 (1988)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Grubb, D.J.: \(U\)-sets in compact, 0-dimensional, metric groups. Canad. Math. Bull. 32(2), 149–155 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Grubb, D.J.: Growth conditions for thin sets in Vilenkin groups of bounded order. Proc. Amer. Math. Soc. 119(2), 567–571 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Harris, D.C.: Sets of uniqueness and closed subgroups in Vilenkin groups. Anal. Math. 16(2), 115–122 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hewitt, E., Ross, K.A.: Abstract Harmonic Analysis. Vol. I. 2nd edn. Grundlehren der Mathematischen Wissenschaften, vol. 115. Springer, Berlin (1979)Google Scholar
  11. 11.
    Kechris, A.S., Louveau, A.: Descriptive Set Theory and the Structure of Sets of Uniqueness. London Mathematical Society Lecture Note Series, vol. 128. Cambridge University Press, Cambridge (1987)CrossRefzbMATHGoogle Scholar
  12. 12.
    Kholshchevnikova, N., Skvortsov, V.: On \(U\)- and \(M\)-sets for series with respect to characters of compact zero-dimensional groups. J. Math. Anal. Appl. 446(1), 383–394 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Plotnikov, M.G.: On uniqueness sets for multiple Walsh series. Math. Notes 81(2), 234–246 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Plotnikov, M.G.: Recovery of the coefficients of multiple Haar and Walsh series. Real Anal. Exchange 33(2), 291–308 (2006/2007)Google Scholar
  15. 15.
    Plotnikov, M.G.: Quasi-measures on the group \(G^m\), Dirichlet sets, and uniqueness problems for multiple Walsh series. Sb. Math. 210(12), 1837–1862 (2010)CrossRefzbMATHGoogle Scholar
  16. 16.
    Plotnikov, M., Skvortsov, V.: On various types of continuity of multiple dyadic integrals. Acta Math. Acad. Paedagog. Nyházi. (N.S.) 32(2), 247–275 (2016)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Schipp, F., Wade, W.R., Simon, P.: Walsh Series. Akadémiai Kiadó, Budapest (1990)zbMATHGoogle Scholar
  18. 18.
    Skvortsov, V.A.: On the coefficients of convergent multiple Haar and Walsh series. Moscow Univ. Math. Bull. 28(6), 119–121 (1973)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Skvortsov, V.A.: Some generalizations of uniqueness theorems for series in Walsh systems. Math. Notes 13(3), 224–227 (1973)CrossRefzbMATHGoogle Scholar
  20. 20.
    Skvortsov, V.A.: Henstock–Kurzweil type integrals in \({\mathscr {P}}\)-adic harmonic analysis. Acta Math. Acad. Paedagog. Nyházi. (N.S.) 20(2), 207–224 (2004)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Skvortsov, V.A., Tulone, F.: Multidimensional dyadic Kurzweil–Henstock- and Perron-type integrals in the theory of Haar and Walsh series. J. Math. Anal. Appl. 421(2), 1502–1518 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Vilenkin, N.Ya.: On a class of complete orthonormal systems. Amer. Math. Soc. Transl. Ser. 2 28, 1–35 (1963)Google Scholar
  23. 23.
    Vladimirov, V.S., Volovich, I.V., Zelenov, E.I.: \(p\)-Adic Analysis and Mathematical Physics. World Scientific, River Edge (1994)CrossRefzbMATHGoogle Scholar
  24. 24.
    Wade, W.R.: Sets of uniqueness for the group of integers of a \(p\)-series field. Canad. J. Math. 31(4), 858–866 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Wade, W.R., Yoneda, K.: Uniqueness and quasimeasures on the group of integers of a \(p\)-series field. Proc. Amer. Math. Soc. 84(2), 202–206 (1982)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Yoneda, K.: Perfect sets of uniqueness on the group \(2^\omega \). Canad. J. Math. 34(3), 759–764 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Yurchenko, I.S.: \(U\)-set for the system of characters of the zero-dimensional group under convergence over cubes. Izv. Saratov Univ. (N.S.) Ser. Math. Mech. Inform. 12(2(1)), 35–43 (2013) (in Russian)Google Scholar
  28. 28.
    Zhereb’eva, T.A.: On a class of sets of uniqueness for multiple Walsh series. Moscow Univ. Math. Bull. 64(2), 55–61 (2009)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Applied MathematicsVologda State UniversityVologdaRussia
  2. 2.Department of Mathematics and MechanicsVologda State Milk Industry AcademyMolochnoe, VologdaRussia

Personalised recommendations