European Journal of Mathematics

, Volume 5, Issue 3, pp 845–857 | Cite as

The effect of tree diffusion in a two-dimensional continuous model for Easter Island

  • Bálint Takács
  • Róbert Horváth
  • István FaragóEmail author
Research Article


We consider a two-dimensional continuous model that describes the ecology of Easter Island. We show that the increase of the parameter corresponding to the diffusion of trees on the island has a stabilizing effect on the system, potentially preventing the collapse of island’s ecology. Next we give analytic proofs for these statements, and conduct numerical experiments that confirm these results.


Differential equations Stability Easter Island Modeling Diffusion Finite element method 

Mathematics Subject Classification

35Q92 35B35 35K57 65M60 91D10 92D40 


  1. 1.
    Anagnost, J.J., Desoer, C.A.: An elementary proof of the Routh–Hurwitz stability criterion. Circuits Systems Signal Process. 10(1), 101–114 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bahn, P.G., Flenley, J.: Easter Island, Earth Island. Thames & Hudson, New York (1992)Google Scholar
  3. 3.
    Basener, W., Brooks, B., Radin, M., Wiandt, T.: Rat instigated human population collapse on Easter Island. Nonlinear Dyn. Psychol. Life Sci. 12(3), 227–240 (2008)Google Scholar
  4. 4.
    Basener, W., Brooks, B., Radin, M., Wiandt, T.: Spatial effects and Turing instabilities in the invasive species model. Nonlinear Dyn. Psychol. Life Sci. 15(4), 455–464 (2011)MathSciNetGoogle Scholar
  5. 5.
    Casten, R.G., Holland, C.J.: Stability properties of solutions to systems of reaction–diffusion equations. SIAM J. Appl. Math. 33(2), 353–364 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Courant, R., Hilbert, D.: Methoden der Mathematischen Physik I. 2nd edn. Springer, Berlin (1931). English transl.: Methods of Mathematical Physics, Vol. I., Interscience, New York (1953)Google Scholar
  7. 7.
    Hunt, T.L.: Rethinking the fall of Easter Island: new evidence points to an alternative explanation for a civilization’s collapse. Amer. Sci. 94(5), 412–419 (2006)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Hunt, T.L.: Rethinking Easter Island’s ecological catastrophe. J. Archaeological Sci. 34(3), 485–502 (2007)CrossRefGoogle Scholar
  9. 9.
    Hurwitz, A.: Über die Bedingungen, unter welchen eine Gleichung nur Wurzeln mit negativen reellen Theilen besitzt. Math. Ann. 46, 273–284 (1895) Also in: Bellman, R., Kalaba, R.E. (eds.) Selected Papers on Mathematical Trends in Control Theory, pp. 70–82. Dover, New York (1964)Google Scholar
  10. 10.
    Othmer, H.G., Scriven, L.E.: Interactions of reaction and diffusion in open systems. Ind. Eng. Chem. Fundam. 8(2), 302–313 (1969)CrossRefGoogle Scholar
  11. 11.
    Routh, E.J.: A Treatise on The Stability of Motion. Macmillan, London (1877)zbMATHGoogle Scholar
  12. 12.
    Takács, B.: Analysis of some characteristic parameters in an invasive species model. Ann. Univ. Sci. Budapest. Sect. Comput. 45, 119–133 (2016)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Takács, B., Horváth, R., Faragó, I.: The effect of tree-diffusion in a mathematical model of Easter Island’s population. Electron. J. Qual. Theory Differ. Equ. 2016, # 84 (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Applied Analysis and Computational MathematicsEötvös Loránd UniversityBudapestHungary
  2. 2.Department of AnalysisBudapest University of Technology and EconomicsBudapestHungary
  3. 3.MTA-ELTE NumNet Research GroupBudapestHungary

Personalised recommendations