European Journal of Mathematics

, Volume 5, Issue 3, pp 903–908 | Cite as

A curve-detecting formula for projective surfaces

  • DongSeon HwangEmail author
Research Article


We present an intersection-theoretic formula concerning curves on projective surfaces in terms of lattices with special emphasis on minimal resolutions of \({\mathbb {Q}}\)-homology projective planes. This formula can be used to detect the existence/nonexistence of curves with given intersection properties.


Lattice \({\mathbb {Q}}\)-Homology projective plane Surface singularity 

Mathematics Subject Classification

14C17 14J25 14J17 



The author would like to thank the referee for the careful reading and suggestions which improved the exposition of this paper.


  1. 1.
    Hwang, D., Keum, J.: Algebraic Montgomery–Yang problem: the non-cyclic case. Math. Ann. 350(3), 721–754 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Hwang, D., Keum, J.: Algebraic Montgomery–Yang problem: the nonrational surface case. Michigan Math. J. 62(1), 3–37 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Hwang, D., Keum, J.: Algebraic Montgomery–Yang problem: the log del Pezzo surface case. J. Math. Soc. Japan 66(4), 1073–1089 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Keum, J.: Quotients of fake projective planes. Geom. Topol. 12(4), 2497–2515 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Megyesi, G.: Generalisation of the Bogomolov–Miyaoka–Yau inequality to singular surfaces. Proc. London Math. Soc. 78(2), 241–282 (1999)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsAjou UniversitySuwonRepublic of Korea

Personalised recommendations