Two examples of affine homogeneous varieties

Research Article
  • 13 Downloads

Abstract

The aim is to describe two homogeneous affine open sets in some projective spaces. The sets are well known, their groups of automorphisms contain simple exceptional groups of types \(E_6\) or \(E_7\), although the total groups of automorphisms are infinite-dimensional and both the sets are flexible. We prove existence of automorphisms not belonging to the connected components of unity, construct extended Weyl groups including these non-tame automorphisms. Our methods are based on classical combinatorics associated with 27 lines on non-singular cubic surfaces and with 56 exceptional curves on Del Pezzo surfaces of degree 2. Some traditional applications of Jordan algebras are used.

Keywords

Flexible set Exceptional groups \(E_6 , E_7\) Jordan algebra Weyl group 

Mathematics Subject Classification

14R10 14R20 14L30 17B22 20G41 

Notes

Acknowledgements

First of all the author would like to express his gratitude to Ernest Vinberg, who attracted the attention of listeners to the subject during his lectures at the Moscow conference “Lie algebras, Algebraic Groups and Theory of Invariants” (January 30–February 4, 2017). His lecture from February, 4 was devoted to exceptional groups and the cubic form \(F_3\). The author also wishes to thank Ivan Cheltsov who encouraged to contribute to the collection dedicated to William Edge. The author is truly grateful to an anonymous referee for his/her efforts, remarks and comments.

References

  1. 1.
    Arzhantsev, I., Flenner, H., Kaliman, S., Kutzschebauch, F., Zaidenberg, M.: Flexible varieties and automorphism groups. Duke Math. J. 162(4), 767–823 (2013)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Baker, H.F.: Abel’s Theorem and the Allied Theory. Cambridge University Press, Cambridge (1897)MATHGoogle Scholar
  3. 3.
    Brown, R.B.: Groups of type \(E_7\). J. Reine Angew. Math. 236, 79–102 (1969)MathSciNetGoogle Scholar
  4. 4.
    Cooperstein, B.N.: The fifty-six-dimensional module for \(E_7\): I. A four form for \(E_7\). J. Algebra 173(2), 361–389 (1995)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Dickson, L.E.: The configurations of the 27 lines on a cubic surface and the 28 bitangents to a quartic curve. Bull. Amer. Math. Soc. 8(2), 63–70 (1901)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Freudenthal, H.: Oktaven. Ausnahmegruppen und Oktavengeometrie. Mathematisch Instituut der Rijksuniversiteit te Utrecht, Utrecht (1951)MATHGoogle Scholar
  7. 7.
    Freudenthal, H.: Oktaven, Ausnahmegruppen und Oktavengeometrie. In: Springer, T.A., van Dalen, D. (eds.) Hans Freudenthal Selecta, pp. 214–269. European Mathematical Society (EMS), Zürich (2009)Google Scholar
  8. 8.
    Freudenthal, H.: Oktaven, Ausnahmegruppen und Oktavengeometrie (an extended Russian translation by B.A. Rosenfeld). Matematika 1(1), 117–153 (1957)Google Scholar
  9. 9.
    Freudenthal, H.: Zur ebenen Oktavengeometrie. Nederl. Akad. Wetensch. Proc. Ser. A 56, 195–200 (1953)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Freudenthal, H.: Zur ebenen Oktavengeometrie. In: Springer, T.A., van Dalen, D. (eds.) Hans Freudenthal Selecta, pp. 288–293. European Mathematical Society (EMS), Zürich (2009)Google Scholar
  11. 11.
    Henderson, A.: The Twenty-Seven Lines Upon the Cubic Surface. Ph.D. Thesis, University of Chicago (1915)Google Scholar
  12. 12.
    Jacobson, N.: Structure and Representations of Jordan Algebras. American Mathematical Society Colloquium Publications, vol. 39. American Mathematical Society, Providence (1968)Google Scholar
  13. 13.
    Jordan, C.: Traité des Substitutions Algébriques. Gauthier-Villars, Paris (1870)MATHGoogle Scholar
  14. 14.
    Manin, Yu.I.: Cubic Forms. Nauka, Moscow (1972); English translation by M. Hazewinlel, North-Holland Mathematical Library, vol. 4. North-Holland, Amsterdam (1986)Google Scholar
  15. 15.
    Miller, G.A., Blichfeldt, H.F., Dickson, L.E.: Theory and Applications of Finite Groups. Wiley, New York (1916)MATHGoogle Scholar
  16. 16.
    McCrimmon, K.: A Taste of Jordan Algebras. Universitext. Springer, New York (2004)MATHGoogle Scholar
  17. 17.
    Salmon, G.: A Treatise on the Higher Plane Curves, 3rd edn. Hodges, Foster, Dublin (1879)Google Scholar
  18. 18.
    Salmon, G.: Analytische Geometrie der Höheren ebenen Curven (German translation by W. Fiedler). Teubner, Leipzig (1873)MATHGoogle Scholar
  19. 19.
    Shafarevich, I.R.: On some infinite-dimensional groups. II. Math. USSR-Izv. 18(1), 185–194 (1982)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Springer, T.A., Veldkamp, F.D.: Octonions, Jordan Algebras and Exceptional Groups. Springer Monographs in Mathematics. Springer, Berlin (2000)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.SamaraRussia

Personalised recommendations