Journal of Dynamic Behavior of Materials

, Volume 5, Issue 4, pp 495–503 | Cite as

Ballistic Response of a FCC-B2 Eutectic AlCoCrFeNi2.1 High Entropy Alloy

  • Deep ChoudhuriEmail author
  • Philip A. Jannotti
  • Saideep Muskeri
  • Shivakant Shukla
  • Sindhura Gangireddy
  • Sundeep Mukherjee
  • Brian E. Schuster
  • Jeffrey T. Lloyd
  • Rajiv S. Mishra
Research Paper


An AlCoCrFeNi2.1 eutectic high entropy alloy (EHEA), comprising of FCC phase and a high volume fraction of plate and irregularly shaped BCC-ordered intermetallic B2 domains, was subjected to normal impact by spherical Tungsten–Carbide projectiles. Depending on projectile velocity, the impacted AlCoCrFeNi2.1 plates were partially penetrated (at the lowest velocity of 803 m/s), plugged (intermediate velocity of 1159 m/s), and fully penetrated (highest velocity of 1388 m/s). Electron microscopy was utilized to characterize the residual damage or deformation features in the recovered specimens. Failure in the partially penetrated conditions was dominated by interfacial decohesion at the plate-like B2 and FCC interfaces. At higher velocities where plugging occurred, failure was dominated by crack formation in regions containing adiabatic shear band. These results indicated a transition in failure modes as a function of projectile velocities, where the FCC-B2 microstructure dominate failure at lower velocities, while such microstructural features do not influence dynamic failure at higher velocities.


Eutectic high entropy alloy Dynamic loading Failure 



The work was performed under a cooperative agreement between the U.S. Army Research Laboratory and the University of North Texas (W911NF-16–2-0189). We also acknowledge the Materials Research Facility at UNT for the microscopy facilities.


  1. 1.
    Jien-Wei Y (2006) Recent progress in high entropy alloys. Ann Chim Sci Mater 31(6):633–648CrossRefGoogle Scholar
  2. 2.
    Murty BS, Yeh J-W, Ranganathan S (2014) High-entropy alloys. Butterworth-Heinemann, OxfordGoogle Scholar
  3. 3.
    Zhang Y, Zuo TT, Tang Z, Gao MC, Dahmen KA, Liaw PK, Lu ZP (2014) Microstructures and properties of high-entropy alloys. Prog Mater Sci 61:1–93CrossRefGoogle Scholar
  4. 4.
    Miracle DB, Senkov ON (2017) A critical review of high entropy alloys and related concepts. Acta Mater 122:448–511CrossRefGoogle Scholar
  5. 5.
    Gwalani B, Gorsse S, Choudhuri D, Styles M, Zheng Y, Mishra RS, Banerjee R (2018) Modifying transformation pathways in high entropy alloys or complex concentrated alloys via thermo-mechanical processing. Acta Mater 153:169–185CrossRefGoogle Scholar
  6. 6.
    Choudhuri D, Shukla S, Green WB, Gwalani B, Ageh V, Banerjee R, Mishra RS (2018) Crystallographically degenerate B2 precipitation in a plastically deformed fcc-based complex concentrated alloy. Mater Res Lett 6(3):171–177CrossRefGoogle Scholar
  7. 7.
    Choudhuri D, Gwalani B, Gorsse S, Mikler CV, Ramanujan RV, Gibson MA, Banerjee R (2017) Change in the primary solidification phase from fcc to bcc-based B2 in high entropy or complex concentrated alloys. Scr Mater 127:186–190CrossRefGoogle Scholar
  8. 8.
    Borkar T, Gwalani B, Choudhuri D, Alam T, Mantri AS, Gibson MA, Banerjee R (2016) Hierarchical multi-scale microstructural evolution in an as-cast Al2CuCrFeNi2 complex concentrated alloy. Intermetallics 71:31–42CrossRefGoogle Scholar
  9. 9.
    Wani IS, Bhattacharjee T, Sheikh S, Lu YP, Chatterjee S, Bhattacharjee PP, Guo S, Tsuji N (2016) Ultrafine-grained AlCoCrFeNi2.1 eutectic high-entropy alloy. Mater Res Lett 4(3): 174–179.CrossRefGoogle Scholar
  10. 10.
    Wani IS, Bhattacharjee T, Sheikh S, Bhattacharjee PP, Guo S, Tsuji N (2016) Tailoring nanostructures and mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy using thermo-mechanical processing. Mater Sci Eng A 675: 99–109.CrossRefGoogle Scholar
  11. 11.
    Wani IS, Bhattacharjee T, Sheikh S, Clark IT, Park MH, Okawa T, Guo S, Bhattacharjee PP, Tsuji N (2017) Cold-rolling and recrystallization textures of a nano-lamellar AlCoCrFeNi2.1 eutectic high entropy alloy. Intermetallics 84: 42–51.CrossRefGoogle Scholar
  12. 12.
    Gao X, Yiping L, Zhang B, Liang N, Guanzhong W, Sha G, Liu J, Zhao Y (2017) Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy. Acta Mater 141:59–66CrossRefGoogle Scholar
  13. 13.
    Gangireddy S, Gwalani B, Banerjee R, Mishra RS (2019) Contrasting mechanical behavior in precipitation hardenable AlXCoCrFeNi high entropy alloy microstructures: single phase FCC vs. dual phase FCC-BCC. Mater Sci Eng A 739:158–166CrossRefGoogle Scholar
  14. 14.
    Wang T, Komarasamy M, Shukla S, Mishra RS (2018) Simultaneous enhancement of strength and ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy via friction stir processing. J Alloys Compd 766:312–317CrossRefGoogle Scholar
  15. 15.
    Shukla S, Wang T, Cotton S, Mishra RS (2018) Hierarchical microstructure for improved fatigue properties in a eutectic high entropy alloy. Scr Mater 156:105–109CrossRefGoogle Scholar
  16. 16.
    Otto F, Dlouhý A, Somsen CH, Bei H, Eggeler G, George EP (2013) The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater 61: 5743–5755.CrossRefGoogle Scholar
  17. 17.
    Deng Y, Tasan CC, Pradeep KG, Springer H, Kostka A, Raabe D (2015) Design of a twinning-induced plasticity high entropy alloy. Acta Mater 94:124–133CrossRefGoogle Scholar
  18. 18.
    Li Z, Pradeep KG, Deng Y, Raabe D, Tasan CC (2016) Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature 534(7606):227CrossRefGoogle Scholar
  19. 19.
    Laplanche G, Kostka A, Horst OM, Eggeler G, George EP (2016) Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy. Acta Mater 118:152–163CrossRefGoogle Scholar
  20. 20.
    Nene SS, Frank M, Liu K, Mishra RS, McWilliams BA, Cho KC (2018) Extremely high strength and work hardening ability in a metastable high entropy alloy. Sci Rep 8(1):9920CrossRefGoogle Scholar
  21. 21.
    Choudhuri D, Komarasamy M, Ageh V, Mishra RS (2018) Investigation of plastic deformation modes in Al0.1CoCrFeNi high entropy alloy. Mater Chem Phys 217:308–314CrossRefGoogle Scholar
  22. 22.
    He JY, Wang H, Huang HL, Xu XD, Chen MW, Wu Y, Liu XJ, Nieh TG, An K, Lu ZP (2016) A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater 102:187–196CrossRefGoogle Scholar
  23. 23.
    Kumar N, Ying Q, Nie X, Mishra RS, Tang Z, Liaw PK, Brennan RE, Doherty KJ, Cho KC (2015) High strain-rate compressive deformation behavior of the Al0.1CrFeCoNi high entropy alloy. Mater Des 86:598–602CrossRefGoogle Scholar
  24. 24.
    Gangireddy S, Gwalani B, Liu K, Banerjee R, Mishra RS (2018) Microstructures with extraordinary dynamic work hardening and strain rate sensitivity in Al0.3CoCrFeNi high entropy alloy. Mater Sci Eng A 734:42–50CrossRefGoogle Scholar
  25. 25.
    Gangireddy S, Gwalani B, Mishra RS (2018) Grain size dependence of strain rate sensitivity in a single phase FCC high entropy alloy Al0.3CoCrFeNi. Mater Sci Eng A 736:344–348CrossRefGoogle Scholar
  26. 26.
    Gangireddy S, Kaimiao Liu, Gwalani B, Mishra R (2018) Microstructural dependence of strain rate sensitivity in thermomechanically processed Al0.1CoCrFeNi high entropy alloy. Mater Sci Eng A 727:148–159CrossRefGoogle Scholar
  27. 27.
    Meyers MA (1994) Dynamic behavior of materials. Wiley, New YorkCrossRefGoogle Scholar
  28. 28.
    Esquivel EV, Murr LE (2006) Deformation effects in shocked metals and alloys. Mater Sci Technol 22(4):438–452CrossRefGoogle Scholar
  29. 29.
    Huang H, Asay JR (2006) Reshock response of shock deformed aluminum. J Appl Phys 100(4):043514CrossRefGoogle Scholar
  30. 30.
    Huang H, Asay JR (2007) Reshock and release response of aluminum single crystal. J Appl Phys 101(6):063550CrossRefGoogle Scholar
  31. 31.
    Choudhuri D, Gupta YM (2013) Shock compression of aluminum single crystals to 70 GPa: role of crystalline anisotropy. J Appl Phys 114(15):153504CrossRefGoogle Scholar
  32. 32.
    Fowles GR (1961) Shock wave compression of hardened and annealed 2024 aluminum. J Appl Phys 32(8):1475–1487CrossRefGoogle Scholar
  33. 33.
    Murr LE, Garcia EP, Rivas JM, Huang W, Grace FI, Rupert NL (1997) Ballistic penetration in thick copper plates: microstructural characterization. Scr Mater 37(9):1329–1335CrossRefGoogle Scholar
  34. 34.
    Murr LE, Trillo EA, Bujanda AA, Martinez NE (2002) Comparison of residual microstructures associated with impact craters in fcc stainless steel and bcc iron targets: the microtwin versus microband issue. Acta Mater 50(1):121–131CrossRefGoogle Scholar
  35. 35.
    Martinez F, Murr LE, Ramirez A, Lopez MI, Gaytan SM (2007) Dynamic deformation and adiabatic shear microstructures associated with ballistic plug formation and fracture in Ti–6Al–4V targets. Mater Sci Eng A 454:581–589CrossRefGoogle Scholar
  36. 36.
    Murr LE, Ramirez AC, Gaytan SM, Lopez MI, Martinez EY, Hernandez DH, Martinez E (2009) Microstructure evolution associated with adiabatic shear bands and shear band failure in ballistic plug formation in Ti–6Al–4V targets. Mater Sci Eng A 516:205–216CrossRefGoogle Scholar
  37. 37.
    Dodd B, Bai Y (eds) (2012) Adiabatic shear localization: frontiers and advances. Elsevier, AmsterdamGoogle Scholar
  38. 38.
    Martinez E, Gaytan L, Ramirez L, Guerrero R, Anchondo P, Schuster BE, Fermen-Coker M (2006) Adiabatic shear bands associated with plug formation and penetration in Ti-6Al-4V targets: formation, structure, and performance: a preliminary study. In: EPD 2006 Congress, San Antonio, pp 137–142Google Scholar
  39. 39.
    Bhattacharyya D, Viswanathan GB, Denkenberger R, Furrer D, Fraser HL (2003) The role of crystallographic and geometrical relationships between α and β phases in an α/β titanium alloy. Acta Mater 51(16):4679–4691CrossRefGoogle Scholar
  40. 40.
    Choudhuri D, Borkar T, Banerjee R, Banerjee D (2016) Mapping the decomposition of β to α in composition and temperature space in titanium alloys. In: Proceedings of the 13th world conference on titanium. Wiley, Hoboken, pp 515–519Google Scholar
  41. 41.
    Misra A, Gibala R (1999) Slip transfer and dislocation nucleation processes in multiphase ordered Ni-Fe-Al alloys. Metall Mater Trans A 30(4):991–1001CrossRefGoogle Scholar
  42. 42.
    Misra A, Gibala R (1997) Room-temperature deformation behavior of directionally solidified multiphase Ni-Fe-Al alloys. Metall Mater Trans A 28(3):795–807CrossRefGoogle Scholar
  43. 43.
    Misra A, Kim JT, Gibala R (1997) Room-temperature deformation behavior of a directionally solidified β (B2)-(Ni-Fe-Al) intermetallic alloy. Metall Mater Trans A 28(1):135–147CrossRefGoogle Scholar

Copyright information

© Society for Experimental Mechanics, Inc 2019

Authors and Affiliations

  • Deep Choudhuri
    • 1
    • 2
    • 3
    Email author
  • Philip A. Jannotti
    • 4
  • Saideep Muskeri
    • 1
  • Shivakant Shukla
    • 1
  • Sindhura Gangireddy
    • 1
    • 2
  • Sundeep Mukherjee
    • 1
    • 2
  • Brian E. Schuster
    • 4
  • Jeffrey T. Lloyd
    • 4
  • Rajiv S. Mishra
    • 1
    • 2
  1. 1.Department of Materials Science and EngineeringUniversity of North TexasDentonUSA
  2. 2.Advanced Materials and Manufacturing Processes InstituteUniversity of North TexasDentonUSA
  3. 3.Department of Materials and Metallurgical EngineeringNew Mexico Institute of Mining and TechnologySocorroUSA
  4. 4.US Army Research LaboratoryAberdeen Proving GroundUSA

Personalised recommendations