Advertisement

Comparison of Simultaneous Shock Temperature Measurements from Three Different Pyrometry Systems

  • Thomas A. OtaEmail author
  • Russell Amott
  • C. A. Carlson
  • David J. Chapman
  • Mark A. Collinson
  • R. B. Corrow
  • Daniel E. Eakins
  • T. E. Graves
  • T. M. Hartsfield
  • David B. Holtkamp
  • A. J. Iverson
  • James C. Richley
  • J. B. Stone
Article
  • 17 Downloads

Abstract

Pyrometry is one of the most prevalent techniques for measuring temperature in shock physics experiments. However, the challenges of applying pyrometry in such highly dynamic environments produces multiple sources of uncertainty that require investigation. An outstanding question is the degree of agreement between different pyrometers and different experiments. Here we report a series of novel plate impact experiments with simultaneous thermal radiance measurements using three different multi-wavelength optical pyrometry systems, each with different spatial and temporal resolutions, on samples shocked to identical states. We compare the temperatures measured by each system and their associated uncertainties using a number of emissivity assumptions. The results shown that the measurements from all three systems agree within uncertainty. Some non-thermal light contamination was observed despite a number of prevention measures.

Keywords

Shock temperature Pyrometry Plate impact 

Notes

Acknowledgements

The authors would like to thank Dave Pitman and Robert Denning for operating the gun facility. The AWE personnel would like to thank Tony Gallagher for technical drawing support and Neil Holmes for input on the impedance-matching slurry. T.O would like to thank Antony Glauser for helpful discussions on the application of probability density functions to pyrometry data. D.E.E., and D.J.C., thank Imperial College London, AWE, and the University of Oxford for their support. D.J.C also acknowledges the Engineering and Physical Sciences Research Council (EPSRC) for support through a Knowledge Transfer Secondment (KTS). Support for DEE provided by the Defence Science and Technology Laboratory (DSTL) is also gratefully acknowledged. UK Ministry of Defence © Crown Owned Copyright 2019/AWE.

References

  1. 1.
    Ota T, Chapman D, Eakins D (2017) Monte-Carlo modelling to determine optimum filter choives for sub-microsecond optical pyrometry. Rev Sci Instrum 88:04492CrossRefGoogle Scholar
  2. 2.
    Chrzanowski K, Szulim M (1999) Errors of temperature measurement with multiband infrared systems. Appl Opt 38:1998–2006CrossRefGoogle Scholar
  3. 3.
    Fu T, Cheng X, Fan X, Ding J (2004) The analysis of optimization criteria for multi-band pyrometry. Metrologia 41:305–313CrossRefGoogle Scholar
  4. 4.
    Seifter A, AW O (2007) About the proper wavelength for pyrometry on shock physics experiments. Int J Thermophys 28:934–946CrossRefGoogle Scholar
  5. 5.
    Khan M, Allemand C, Eagar T (1991) Non-contact temperature measurement. I. Interpolation based techniques. Rev Sci Instrum 62:392–402CrossRefGoogle Scholar
  6. 6.
    La Lone BM, Stevens GD, Turley WD, Holtkamp DB, Iverson AJ, Hixson RS, Veeser LR (2013) Release path temperatures of shock-compressed tin from dynamic reflectance and radiance measurements. J Appl Phys 114:063506CrossRefGoogle Scholar
  7. 7.
    Turley WD, Holtkamp DB, Veeser LR, Stevens GD, Marshall BR, Corrow SARB, Stone JB, Young JA, Grover M (2011) Infrared emissivity of tin upon release of a 25 GPa shock into a lithium flouride window. J Appl Phys 110:103510CrossRefGoogle Scholar
  8. 8.
    Ota T, Chapman D, Richley J, Eakins D (2017) Initial results from a simultaneous pyrometry and reflectivity diagnostic. Proceedings of Shock Compression of Condensed Matter 2017, Awaiting publication, 2017Google Scholar
  9. 9.
    Seifter A, Stewart ST, Furlanetto MR, Kennedy GB, Payton JR, Obst AW (2006) Post‐shock temperature measurements of aluminum. In AIP Conference Proceedings, vol 845, no. 1, pp 139–142) AIPGoogle Scholar
  10. 10.
    Strand OT, Goosman DR, Martinez C, WhitworthW TL, Kuhlow W (2006) Compact system for high-speed velocimetry using heterodyne techniques. Rev Sci Instrum 77:083108CrossRefGoogle Scholar
  11. 11.
    Partouche-Sebban D, Pelissier J, Abeyta F, Anderson W, Byers M, Dennis-Koller D, Esparza J, Hixson R, Holtkamp D, Jensen B, King J, Rodriguez P, Shampine D, Stone J, Westley D, Borror S, Krushwitz D (2005) Measurement of the shock-heated melt curve of lead using pyrometry. J Appl Phys 97:043521CrossRefGoogle Scholar
  12. 12.
    Hereil P, Mabire C (2001) Temperature measurment of tin under shock compression. Proc Shock Compress Condens Matter 2001:1235–1238Google Scholar
  13. 13.
    Forbes J (2012) Shock Wave Compression of Condensed Matter. Springer-Verlag, Berlin HeidelbergCrossRefGoogle Scholar
  14. 14.
    S. Marsh, LASL Shock Hugoniot Data, University of California, 1980.Google Scholar
  15. 15.
    Cox GA, Christie MA (2015) Fiting a multiphase equation of state with swarm intelligence. J Phys 27:405201Google Scholar
  16. 16.
    Turley WD, Stevens GD, Capelle GA, Grover M, Holtkamp DB, LaLone BM, Veeser LR (2013) Luminescence from edge fracture in shocked lithium flouride crystals. J Appl Phys 113:113506CrossRefGoogle Scholar
  17. 17.
    Haslam JJ (2015) “Silicone Tungsten Procedure” LLNL Report LLNL-MI-676695Google Scholar
  18. 18.
    Partouche-Sebban D, Holtkamp DB, Pélissier JL, Taboury J, Rouyer A (2002) An investigation of shock induced temperature rise and melting of bismuth using high-speed optical pyrometry. Shock Waves 11:385–392CrossRefGoogle Scholar
  19. 19.
    Golovashkin AI, Motulevich GP (1964) Optical and electrical properties of tin. J Exp Theor Phys 19(2):301Google Scholar
  20. 20.
    Hartsfield T, Iverson A, Baldwin J (2018) Reflectance determination of optical spectral emmisivity of metal surfaces at ambient conditions. J Appl Phys 124:105107CrossRefGoogle Scholar

Copyright information

© Crown 2019

Authors and Affiliations

  • Thomas A. Ota
    • 1
    • 2
    Email author
  • Russell Amott
    • 1
  • C. A. Carlson
    • 3
  • David J. Chapman
    • 2
    • 4
  • Mark A. Collinson
    • 1
  • R. B. Corrow
    • 3
  • Daniel E. Eakins
    • 2
    • 4
  • T. E. Graves
    • 3
  • T. M. Hartsfield
    • 5
  • David B. Holtkamp
    • 5
  • A. J. Iverson
    • 3
  • James C. Richley
    • 1
  • J. B. Stone
    • 5
  1. 1.AWEAldermastonUK
  2. 2.Department of Engineering ScienceUniversity of OxfordOxfordUK
  3. 3.Nevada National Security Site, New Mexico OperationsLos AlamosUSA
  4. 4.Institute of Shock Physics, Blackett LaboratoryImperial College LondonLondonUK
  5. 5.Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations