Advertisement

Hugoniot Measurements Utilizing In Situ Synchrotron X-ray Radiation

  • D. J. MillerEmail author
  • R. S. Crum
  • M. A. Homel
  • D. E. Eakins
  • D. J. Chapman
  • J. C. Z. Jonsson
  • M. E. Rutherford
  • E. M. Escuariza
  • L. C. Smith
  • E. B. Herbold
  • J. Lind
  • M. C. Akin
Article
  • 8 Downloads

Abstract

Pressure–density relationships derived from the experimentally obtained shock and particle velocities are critical to define a material’s equation of state (EOS). Typically, impact experiments coupled with velocimetry are used to map a material’s Hugoniot. Limitations such as sample geometry and varying indices of refraction may prevent proper characterization using traditional techniques such as photon doppler velocimetry (PDV) or velocity interferometer system for any reflector (VISAR). Here, traditional Hugoniot measurements using PDV are compared to dynamic x-ray imaging encompassing two different sample geometries on the gas gun platform. Through each of these methods an experimentally derived Hugoniot is determined for a previously uncharacterized polymeric material, Somos Watershed XC11122, that is used 3D printed stereolithography parts. A Usup relationship was determined to be Us = 2.93 us + 1.73 mm/μs through traditional PDV. Slope and sound speed values determined from x-ray imaging methods varied 11% from PDV measurements. Each method yielded a Hugoniot with densities similar to poly(methyl methacrylate) (PMMA). The similarity shows the viability of such analyses for dynamic properties and Hugoniot data. The performance and analysis of both PDV and dynamic x-ray measurements are laid out in this work. Comparing PDV and x-ray imaging highlights distinct advantages and disadvantages among each method. PDV provides less uncertainty for velocity measurements, however x-ray imaging is more spatially resolved allowing for shock steadiness observations of value when studying heterogeneous materials. Additionally, x-ray imaging provides greater insight into the shape and heterogeneity of the shock front as well as uniaxial strain state (1D zone) assumptions.

Keywords

Hugoniot X-ray imaging Polymer PDV Equation of state Synchrotron Gas gun Shock compression 

Notes

Acknowledgements

Dorothy Miller gratefully acknowledges the NNSA Graduate Fellowship and Pacific Northwest National Laboratory for their support with regards to this opportunity. Many thanks to Ryan Hurley, Ricky Chau, and Elida White for their help with sample/experiment preparation and fruitful discussions. Many thanks to Michael Rutherford, John Jonsson, Liam Smith and Emilio Escauriza for experimental help and operations. The experiments were performed on beamline ID-19 at the European Synchrotron Radiation Facility (ESRF), Grenoble, France under the Long-Term Proposal MI-1252 (DE). We are grateful to Margie Olbinado and Alexander Rack at the ESRF for providing assistance in using beamline 19. The authors are thankful for continued support from DSTL (DE), First Light Fusion (EE), EPSRC (DJC, MR, LS, JJ), and AWE (MR, LS, JJ). This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and was supported by LLNL Laboratory Directed R&D Program (tracking no. 16-ERD-010).

References

  1. 1.
    Dobratz B (1972) LLNL explosives handbook (Rep. UCRL52997)Google Scholar
  2. 2.
    Hussain F, Hojjati M, Okamoto M, Gorga RE (2006) Review article: polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J Compos Mater 40(17):1511.  https://doi.org/10.1177/0021998306067321 CrossRefGoogle Scholar
  3. 3.
    Fredenburg DA, Koller DD, Rigg PA, Scharff RJ (2013) High-fidelity Hugoniot analysis of porous materials. Rev Sci Instrum 84(1):013903.  https://doi.org/10.1063/1.4774394 CrossRefGoogle Scholar
  4. 4.
    Knudson MD, Hanson DL, Bailey JE, Hall CA, Asay JR, Anderson WW (2001) Equation of state measurements in liquid deuterium to 70 GPa. Phys Rev Lett 87:225501.  https://doi.org/10.1103/PhysRevLett.87.225501 CrossRefGoogle Scholar
  5. 5.
    Mitchell AC, Nellis WJ (1981) Shock compression of aluminum, copper, and tantalum. J Appl Phys 52(5):3363.  https://doi.org/10.1063/1.329160 CrossRefGoogle Scholar
  6. 6.
    Luo SN, Jensen BJ, Hooks DE, Fezzaa K, Ramos KJ, Yeager JD, Kwiatkowski K, Shimada T (2012) Gas gun shock experiments with single-pulse x-ray phase contrast imaging and diffraction at the advanced photon source. Rev Sci Instrum 83(7):073903.  https://doi.org/10.1063/1.4733704 CrossRefGoogle Scholar
  7. 7.
    Jensen BJ, Ramos KJ, Iverson AJ, Bernier J, Carlson CA, Yeager JD, Fezzaa K, Hooks DE (2014) Dynamic experiment using IMPULSE at the advanced photon source. J Phys 500(4):042001Google Scholar
  8. 8.
    Crum R, Pagan D, Lind J, Homel M, Hurley R, Herbold E, Akin M (2017) In: APS meeting abstracts , p E35.009Google Scholar
  9. 9.
    Rutherford ME, Chapman DJ, Derrick JG, Patten JRW, Bland PA, Rack A, Collins GS, Eakins DE (2017) Probing the early stages of shock-induced chondritic meteorite formation at the mesoscale. Sci Rep.  https://doi.org/10.1038/srep45206 Google Scholar
  10. 10.
    Benuzzi-Mounaix A, Loupias B, Koenig M, Ravasio A, Ozaki N, Rabec le Gloahec M, Vinci T, Aglitskiy Y, Faenov A, Pikuz T, Boehly T (2008) Density measurement of low-Z shocked material from monochromatic x-ray two-dimensional images. Phys Rev E 77:045402.  https://doi.org/10.1103/PhysRevE.77.045402 CrossRefGoogle Scholar
  11. 11.
    Escauriza EM, Olbinado MP, Rutherford ME, Chapman DJ, Jonsson JCZ, Rack A, Eakins DE (2018) Ultra-high-speed indirect x-ray imaging system with versatile spatiotemporal sampling capabilities. Appl Opt 57(18):5004.  https://doi.org/10.1364/AO.57.005004 CrossRefGoogle Scholar
  12. 12.
    S.W. XC11122, User GuideGoogle Scholar
  13. 13.
    Jensen BJ, Holtkamp DB, Rigg PA, Dolan DH (2007) Accuracy limits and window corrections for photon Doppler velocimetry. J Appl Phys 101(1):013523.  https://doi.org/10.1063/1.2407290 CrossRefGoogle Scholar
  14. 14.
    Silberschmidt V (2016) Dynamic deformation, damage and fracture in composite materials and structures, 1st edn. Woodhead Publishing, DuxfordGoogle Scholar
  15. 15.
    Celliers PM, Collins GW, Hicks DG, Eggert JH (2005) Systematic uncertainties in shock-wave impedance-match analysis and the high-pressure equation of state of Al. J Appl Phys 98(11):113529.  https://doi.org/10.1063/1.2140077 CrossRefGoogle Scholar
  16. 16.
    Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, Eliceiri KW (2017) Image J2: imageJ for the next generation of scientific image data. BMC Bioinform 18(1):529.  https://doi.org/10.1186/s12859-017-1934-z CrossRefGoogle Scholar
  17. 17.
    Hammel BA, Kilkenny JD, Munro D, Remington BA, Kornblum HN, Perry TS, Phillion DW, Wallace RJ (1994) X-ray radiographic imaging of hydrodynamic phenomena in radiation driven materials shock propagation, material compression, and shear flow. Phys Plasmas 1(5):1662.  https://doi.org/10.1063/1.870668 CrossRefGoogle Scholar
  18. 18.
    Rygg JR, Jones OS, Field JE, Barrios MA, Benedetti LR, Collins GW, Eder DC, Edwards MJ, Kline JL, Kroll JJ, Landen OL, Ma T, Pak A, Peterson JL, Raman K, Town RPJ, Bradley DK (2014) 2D X-ray radiography of imploding capsules at the National Ignition Facility. Phys Rev Lett 112:195001.  https://doi.org/10.1103/PhysRevLett.112.195001 CrossRefGoogle Scholar
  19. 19.
    Evangelidis GD, Psarakis EZ (2008) Parametric image alignment using enhanced correlation coefficient maximization. IEEE Trans Pattern Anal Mach Intell 30(10):1858.  https://doi.org/10.1109/TPAMI.2008.113 CrossRefGoogle Scholar
  20. 20.
    Goshtasby A (1986) Piecewise linear mapping functions for image registration. Pattern Recognit 19(6):459CrossRefGoogle Scholar
  21. 21.
    Goshtasby A (1988) Image registration by local approximation methods. Image Vision Comput 6(4):255.  https://doi.org/10.1016/0262-8856(88)90016-9 CrossRefGoogle Scholar
  22. 22.
    Zeldovich Y, Raizer Y (2012) Physics of shock waves and high-temperature hydrodynamic phenomena. Dover Publications, MineolaGoogle Scholar
  23. 23.
    Melosh H (1989) Impact cratering: a geologic process. Oxford University Press, OxfordGoogle Scholar
  24. 24.
    Nakai K, Yokoyama T (2015) Uniaxial compressive response and constitutive modeling of selected polymers over a wide range of strain rates. J Dyn Behav Mater 1(1):15.  https://doi.org/10.1007/s40870-015-0003-9 CrossRefGoogle Scholar
  25. 25.
    Truss RW, Chadwick GA (1976) The tensile deformation behaviour of a transparent ABS polymer. J Mater Sci 11(8):1385.  https://doi.org/10.1007/BF00540872 CrossRefGoogle Scholar
  26. 26.
    Chem LG Ltd (2016) Transparent abs resin and transparent abs resin composition. Transparent abs resin and transparent abs resin composition (US Patent 20160215083A1)Google Scholar
  27. 27.
    Marsh SP (1980) LASL shock Hugoniot data. University of California Press, BerkeleyGoogle Scholar
  28. 28.
    Millett JCF, Bourne NK (2004) The shock induced equation of state of three simple polymers. J Phys D 37(20):2901CrossRefGoogle Scholar
  29. 29.
    Mitchell AC, Nellis WJ (1981) Shock compression of aluminum, copper, and tantalum. J Appl Phy 52(5):3363.  https://doi.org/10.1063/1.329160 CrossRefGoogle Scholar

Copyright information

© Society for Experimental Mechanics, Inc 2019

Authors and Affiliations

  • D. J. Miller
    • 1
    • 2
    Email author
  • R. S. Crum
    • 1
  • M. A. Homel
    • 1
  • D. E. Eakins
    • 3
  • D. J. Chapman
    • 3
  • J. C. Z. Jonsson
    • 3
  • M. E. Rutherford
    • 3
  • E. M. Escuariza
    • 3
  • L. C. Smith
    • 3
  • E. B. Herbold
    • 1
  • J. Lind
    • 1
  • M. C. Akin
    • 1
  1. 1.Lawrence Livermore National LaboratoryLivermoreUSA
  2. 2.Department of Nuclear EngineeringUniversity of TennesseeKnoxvilleUSA
  3. 3.Department of Engineering ScienceUniversity of OxfordOxfordUK

Personalised recommendations