Advertisement

Journal of Dynamic Behavior of Materials

, Volume 5, Issue 1, pp 13–23 | Cite as

Spall Characterization of EPON 828 Epoxy with Embedded Carbon Nanotubes

  • J. Huneault
  • J. E. Pepper
  • M. Rahmat
  • B. Ashrafi
  • O. E. PetelEmail author
Article
  • 50 Downloads

Abstract

The increasing use of polymer nanocomposites in armor applications requires an understanding of how these materials behave at strain-rates relevant to ballistic impacts. Of particular interest is the role of the microstructure on the failure of these materials under dynamic tensile loading. In the present study, plate impact experiments were conducted in order to measure the spall strength of a neat epoxy (EPON 828) and an epoxy–carbon nanotube composite. The addition of pristine carbon nanotubes (CNTs) to the epoxy resulted in a composite material with a lower spall strength than the neat epoxy matrix material. Recovered composite fragments were imaged with a scanning electron microscope. Instances of nanotube pull-out were identified on internal fracture surfaces. The lower spall threshold of the epoxy–CNT composite was attributed to the comparatively weak epoxy–CNT interface, which provides potential sites from which spall failure can favorably nucleate.

Keywords

Spall Epoxy composite Carbon nanotube (CNT) Fracture Impact 

Notes

Acknowledgements

The authors would like to acknowledge financial support from the National Research Council Canada (NRC) through the Security Materials Technology (SMT) program and thank A. Higgins for his assistance with the experimental facility and useful feedback on the manuscript.

Funding

Funding was provided by National Research Council Canada (Grant No. 859482).

References

  1. 1.
    Grujicic M, Pandurangan B, Angstadt DC, Koudela KL, Cheeseman BA (2007) Ballistic-performance optimization of a hybrid carbon-nanotube/e-glass reinforced poly-vinyl-ester-epoxy-matrix composite armor. J Mater Sci 42:5347–5359CrossRefGoogle Scholar
  2. 2.
    Pandya KS, Akella K, Joshi M, Naik NK (2012) Ballistic impact behavior of carbon nanotube and nanosilica dispersed resin and composites. J Appl Phys 112(11):113522CrossRefGoogle Scholar
  3. 3.
    Sutherland HJ, Munson DE (1976) Stress wave propagation in a cloth-laminate carbon phenolic. J Compos Mater 10(2):118–128CrossRefGoogle Scholar
  4. 4.
    Dandekar D, Boteler J, Beaulieu P (1998) Elastic constants and delamination strength of a glass-fiber-reinforced polymer composite. Compos Sci Technol 58(9):1397–1403CrossRefGoogle Scholar
  5. 5.
    Zaretsky E, DeBotton G, Perl M (2004) The response of a glass fibers reinforced epoxy composite to an impact loading. Int J Solids Struct 41(2):569–584CrossRefGoogle Scholar
  6. 6.
    Millett JCF, Meziere YJE, Bourne NK (2007) The response to shock loading of a glass-fibreepoxy composite: effects of fibre orientation to the loading axis. J Phys D 40(17):5358CrossRefGoogle Scholar
  7. 7.
    Tang L, Zhang H, Han J, Wu X, Zhang Z (2011) Fracture mechanisms of epoxy filled with ozone functionalized multi-wall carbon nanotubes. Compos Sci Technol 72(1):7–13CrossRefGoogle Scholar
  8. 8.
    Tessema A, Mitchell W, Koohbor B, Ravindran S, Van Tooren M, Kidane A (2018) The effect of nano-fillers on the in-plane and interlaminar shear properties of carbon fiber reinforced composite. J Dyn Behav Mater 4:296–307CrossRefGoogle Scholar
  9. 9.
    Thostenson ET, Ren Z, Chou TW (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61(13):1899–1912CrossRefGoogle Scholar
  10. 10.
    Rahmat P, Hubert M (2011) Carbon nanotubepolymer interactions in nanocomposites: a review. Compos Sci Technol 72(1):72–84CrossRefGoogle Scholar
  11. 11.
    Zhu J, Peng H, Rodriguez-Macias F, Margrave J, Khabashesku V, Imam A, Lozano K, Barrera E (2004) Reinforcing epoxy polymer composites through covalent integration of functionalized nanotubes. Adv Funct Mater 14(7):643–648CrossRefGoogle Scholar
  12. 12.
    Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotubepolymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35(3):357–401CrossRefGoogle Scholar
  13. 13.
    Bie BX, Han J-H, Lu L, Zhou XM, Qi ML, Zhang Z, Luo SN (2015) Dynamic fracture of carbon nanotube/epoxy composites under high strain-rate loading. Composites A 68:282–288CrossRefGoogle Scholar
  14. 14.
    Antoun T, Seaman L, Curran DR, Kanel GI, Razorenov SV, Utkin AV (2003) Spall fracture, 1st edn. Springer, New YorkGoogle Scholar
  15. 15.
    Curran DR, Shockey DA, Seaman L (1973) Dynamic fracture criteria for a polycarbonate. J Appl Phys 44(9):4025–4038CrossRefGoogle Scholar
  16. 16.
    Golubev VK, Novikov SA, Sobolev YS (1982) Effect of temperature on spall of polymeric materials. J Appl Mechan Techn Phys 23:134–141CrossRefGoogle Scholar
  17. 17.
    Pepper JE, Huneault J, Rahmat M, Ashrafi B, Petel OE (2018) The effect of curing agent on the dynamic tensile failure of an epoxy subjected to plate impact. Int J Impact Eng 113:203–211CrossRefGoogle Scholar
  18. 18.
    Yuan F, Tsai L, Prakash V, Rajendran AM, Dandekar DP (2007) Spall strength of glass fiber reinforced polymer composites. Int J Solids Struct 44(24):7731–7747CrossRefGoogle Scholar
  19. 19.
    Katz S, Zaretsky E, Grossman E, Wagner H (2009) Dynamic tensile strength of organic fiber-reinforced epoxy micro-composites. Compos Sci Technol 69(7):1250–1255CrossRefGoogle Scholar
  20. 20.
    Curran D, Seaman L, Shockey D (1987) Dynamic failure of solids. Phys Rep 147(5):253–388CrossRefGoogle Scholar
  21. 21.
    Pedrazas NA, Worthington DL, Dalton DA, Sherek PA, Steuck SP, Quevedo HJ, Bernstein AC, Taleff EM, Ditmire T (2012) Effects of microstructure and composition on spall fracture in aluminum. Mater Sci Eng A 536:117–123CrossRefGoogle Scholar
  22. 22.
    Williams C, Chen C, Ramesh K, Dandekar D (2014) On the shock stress, substructure evolution, and spall response of commercially pure 1100-o aluminum. Mater Sci Eng A 618:596–604CrossRefGoogle Scholar
  23. 23.
    Marsh SP (1980) LASL shock hugoniot data. Univerisity of California Press, BerkeleyGoogle Scholar
  24. 24.
    Carter W, Marsh SP (1995) Hugoniot equation of state of polymers (technical report). Los Alamos National Laboratory, Los AlamosCrossRefGoogle Scholar
  25. 25.
    Strand OT, Goosman DR, Martinez C, Whitworth TL, Kuhlow WW (2006) Compact system for high-speed velocimetry using heterodyne techniques. Rev Sci Instrum 77(8):083108CrossRefGoogle Scholar
  26. 26.
    Cooper PW (2002) Explosives engineering, 4th edn. Wiley, New YorkGoogle Scholar
  27. 27.
    Munson DE, May RP (1972) Dynamically determined high-pressure compressibilities of three epoxy resin systems. J Appl Phys 43(3):962–971CrossRefGoogle Scholar
  28. 28.
    Petel OE, Jetté FX (2010) Comparison of methods for calculating the shock hugoniot of mixtures. Shock Waves 20:73–83CrossRefGoogle Scholar
  29. 29.
    Stepanov GV (1976) Spall fracture of metals by elastic-plastic loading waves. Probl Prochnosti 8:66–70Google Scholar
  30. 30.
    Liu L, Wagner HD (2005) Rubbery and glassy epoxy resins reinforced with carbon nanotubes. Compos Sci Technol 65(11):1861–1868CrossRefGoogle Scholar
  31. 31.
    Rahmat M, Das K, Hubert P (2011) Interaction stresses in carbon nanotubepolymer nanocomposites. ACS Appl Mater Interfaces 3(9):3425–3431CrossRefGoogle Scholar
  32. 32.
    Wright T, Ramesh K (2008) Dynamic void nucleation and growth in solids: a self-consistent statistical theory. J Mechan Phys Solids 56(2):336–359CrossRefGoogle Scholar
  33. 33.
    Wilkerson JW, Ramesh KT (2016) Unraveling the anomalous grain size dependence of cavitation. Phys Rev Lett 117:215503CrossRefGoogle Scholar
  34. 34.
    Peralta P, DiGiacomo S, Hashemian S, Luo S-N, Paisley D, Dickerson R, Loomis E, Byler D, Mcclellan K, D’Armas H (2009) Characterization of incipient spall damage in shocked copper multicrystals. Int J Damage Mechan 18(4):393–413CrossRefGoogle Scholar
  35. 35.
    Utkin AV, Sosikov VA (2005) Impulsive tension of ethanol under shock loading. J Appl Mechan Techn Phys 46:481–488CrossRefGoogle Scholar
  36. 36.
    Grady DE (1988) The spall strength of condensed matter. J Mech Phys Solids 36(3):353–384CrossRefGoogle Scholar
  37. 37.
    Utkin AV (2011) Effect of material fracture kinetics on the spalling pulse amplitude. J Appl Mechan Techn Phys 52:151CrossRefGoogle Scholar
  38. 38.
    Kanel GI (2010) Spall fracture: methodological aspects, mechanisms and governing factors. Int J Fract 163:173–191CrossRefGoogle Scholar
  39. 39.
    Koller DD, Hixson RS, Gray GT, Rigg PA, Addessio LB, Cerreta EK, Maestas JD, Yablinsky CA (2005) Influence of shock-wave profile shape on dynamically induced damage in high-purity copper. J Appl Phys 98(10):103518CrossRefGoogle Scholar
  40. 40.
    Gray GT, Bourne NK, Henrie BL (2007) On the influence of loading profile upon the tensile failure of stainless steel. J Appl Phys 101(9):093507CrossRefGoogle Scholar

Copyright information

© Society for Experimental Mechanics, Inc 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringMcGill UniversityMontrealCanada
  2. 2.Department of Mechanical and Aerospace EngineeringCarleton UniversityOttawaCanada
  3. 3.Aerospace, National Research Council CanadaOttawaCanada
  4. 4.Aerospace, National Research Council CanadaMontrealCanada

Personalised recommendations