Invariant solutions for gradient Ricci almost solitons

  • 4 Accesses


In this paper we provide an ansatz that reduces a pseudo-Riemannian gradient Ricci almost soliton (PDE) into an integrable system of ODE. First, considering a warped structure with conformally flat base invariant under the action of an \((n-1)\)-dimensional translation group and semi-Riemannian Einstein fiber, we provide the ODE system which characterizes all such solitons. Then, we also provide a classification for a conformally flat pseudo-Riemannian gradient Ricci almost soliton invariant by the actions of a translation group or a pseudo-orthogonal group. Finally, we conclude with some explicit examples.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.


  1. 1.

    Barros, A., Batista, R., Ribeiro Jr., E.: Rigidity of gradient Ricci almost solitons. Ill. J. Math. 56, 1267–1279 (2012)

  2. 2.

    Barros, A., Gomes, J.N., Ribeiro Jr., E.: A note on rigidity of the almost Ricci soliton. Arch. Math. (Basel) 100, 481–490 (2013)

  3. 3.

    Batat, W., Brozos-Vázquez, M., García-Río, E., Gavino-Fernández, S.: Ricci solitons on Lorentzian manifolds with large isometry groups. Bull. Lond. Math. Soc. 43(6), 1219–1227 (2011)

  4. 4.

    Besse, A.L.: Einstein Manifolds. Springer, Berlin (1987)

  5. 5.

    Brozos-Vázquez, M., Calvaruso, G., García-Río, E., Gavino-Fernández, S.: Three dimension Lorentzian homogeneous Ricci solitons. Isr. J. Math. 188, 385–403 (2012)

  6. 6.

    Brozos-Vázquez, M., García-Río, E., Gavino-Fernández, S.: Locally conformally flat Lorentzian gradient Ricci solitons. J. Geom. Anal. 23(3), 1196–1212 (2013)

  7. 7.

    Brozos-Vázquez, M., García-Río, E., Valle-Regueiro, X.: Half conformally flat gradient Ricci almost solitons. Proc. R. Soc. A 472(2189), 20160043 (2016)

  8. 8.

    Calviño-Louzao, E., Fernández-López, M., García-Río, E., Vázquez-Lorenzo, R.: Homogeneous Ricci almost solitons. Isr. J. Math. 220(2), 531–546 (2017)

  9. 9.

    Catino, G.: Generalized quasi-Einstein manifolds with harmonic Weyl tensor. Math. Z. 271(3–4), 751–756 (2012)

  10. 10.

    Catino, G., et al.: The Ricci–Bourguignon flow. Pac. J. Math. 287(2), 337–370 (2017)

  11. 11.

    Feitosa, F.E.S., Freitas-Filho, A.A., Gomes, J.N.V., Pina, R.S.: Gradient Ricci almost soliton warped product. J. Geom. Phys. 143, 22–32 (2019)

  12. 12.

    O’Neill, B.: Semi-Riemannian Geometry with Applications to Relativity. Academic Press, New York (1983)

  13. 13.

    Onda, K.: Lorentzian Ricci solitons on 3-dimensional Lie groups. Geom. Dedic. 147, 313–322 (2010)

  14. 14.

    Pigola, S., Rigoli, M., Rimoldi, M., Setti, A.: Ricci almost solitons. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) X, 757–799 (2011)

Download references

Author information

Correspondence to Benedito Leandro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Romildo Pina: Partially supported by CAPES-PROCAD.

Communicated by Claudio Gorodski.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Leandro, B., Pina, R. & Bezerra, T.P.F. Invariant solutions for gradient Ricci almost solitons. São Paulo J. Math. Sci. (2020) doi:10.1007/s40863-019-00161-4

Download citation


  • Semi-Riemannian metric
  • Gradient Ricci solitons
  • Warped product

Mathematics Subject Classification

  • 53C21
  • 53C50
  • 53C25