On the periodic Cauchy problem for a coupled system of third-order nonlinear Schrödinger equations

  • M. ScialomEmail author
  • L. M. Bragança
Special Section: Nonlinear Dispersive Equations


We investigate some well-posedness issues for the initial value problem (IVP) associated to the system
$$\begin{aligned} \left\{ \begin{array}[c]{l} 2i\partial _{t}u+q\partial _{x}^{2}u+i\gamma \partial _{x}^{3}u=F_{1}(u,w)\\ 2i\partial _{t}w+q\partial _{x}^{2}w+i\gamma \partial _{x}^{3}w=F_{2}(u,w), \end{array} \right. \end{aligned}$$
where \(F_{1}\) and \(F_{2}\) are polynomials of degree 3 involving u, w and their derivatives. This system describes the dynamics of two nonlinear short-optical pulses envelopes u(xt) and w(xt) in fibers (Hasegawa and Kodama in IEEE J Quantum Electron 23(5):510–524, 1987; Porsezian et al. in Phys Rev E 50:1543–1547, 1994). We prove periodic local well-posedness for the IVP with data in Sobolev spaces \(H^{s}(\mathbb {T)\times } H^{s}(\mathbb {T)}\), \( s\ge 1/2\) and global well-posedness result in Sobolev spaces \(H^{1}(\mathbb {T)\times }H^{1}(\mathbb {T)}\).


Coupled system of third-order nonlinear Schrödinger equations Periodic Cauchy problem Local and global well-posedness 

Mathematics Subject Classification

35Q35 35Q53 



  1. 1.
    Angulo, J.: Stability of cnoidal waves to Hirota–Satsuma systems. Mat. Contemp. 27, 189–223 (2004)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Bindu, S.G., Mahalingam, A., Porsezian, K.: Dark soliton solutions of the coupled Hirota equation in nonlinear fiber. Phys. Lett. A 286, 321–331 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bourgain, J.: Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, part I: Schrödinger equation, part II: the KdV equation. GAFA 3(107–156), 209–262 (1993)zbMATHGoogle Scholar
  4. 4.
    Bragança, L.M., Scialom, M.: On the Cauchy problem for a coupled system of third-order nonlinear Schrodinger equation. Nonlinear Anal. 73, 2991–3003 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Carvajal, X., Linares, F.: A higher order nonlinear Schrödinger equation with variable coefficients. Differ. Integral Equ. 16, 1111–1130 (2003)zbMATHGoogle Scholar
  6. 6.
    Carvajal, X.: Local well-posedness for a higher order nonlinear Schrödinger equation. Eletron. J. Differ. Equ. 13, 1–10 (2004)zbMATHGoogle Scholar
  7. 7.
    Carvajal, X.: Sharp global well-posedness for a higher order Schrödinger equation. J. Fourier Anal. Appl. 12(1), 53–70 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hasegawa, A., Kodama, Y.: Nonlinear pulse propagation in a monomode dieletric guide. IEEE J. Quantum Electron. 23(5), 510–524 (1987)CrossRefGoogle Scholar
  9. 9.
    Hirota, R.: Exact envelope-soliton solutions of a nonlinear wave equation. J. Math. Phys. 14, 805–809 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Laurey, C.: The Cauchy problem for a third order nonlinear Schrödinger equation. Nonlinear Anal. Theory Methods Appl. 29(2), 121–158 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Linares, F., Ponce, G.: Introduction to Nonlinear Dispersive Equations. Universitex, Springer (2009)zbMATHGoogle Scholar
  12. 12.
    Mahalingam, A., Porsezian, K.: Propagation of dark solitons in a system of coupled higher-order nonlinear Schrödinger equations. J. Phys. A Math. Gen. 35, 3099–3109 (2002)CrossRefzbMATHGoogle Scholar
  13. 13.
    Porsezian, K., Schanmugha Sundaram, P., Mahalingam, A.: Coupled higher-order nonlinear Schrödinger equations in nonlinear optics: Painlevé analysis and integrability. Phys. Rev. E 50, 1543–1547 (1994)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Porsezian, K., Kalithasan, B.: Cnoidal and solitary wave solutions of the coupled higher order nonlinear Schrödinger equation in nonlinear optics. Chaos Solitons Fractals 31, 188–196 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Radhakrishinan, R., Lakshmanan, M.: Exact soliton solutions to coupled nonlinear Schrödinger equations with higher-order effects. Phys. Rev. E 54, 2949–2955 (1996)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Staffilani, G.: On the generalized Korteweg-de Vries-type equations. Differ. Integral Equ. 10, 777–796 (1997)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Takaoka, H.: Well-Posedness for the higher order nonlinear Schrödinger equation. Adv. Math. Sci. Appl. 10, 149–171 (2000)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Tian, J., Tian, H., Li, Z., Zhou, G.: Combined solitary-wave solution for coupled higher-order nonlinear Schrödinger equations. J. Opt. Soc. Am. B 21, 1908–1912 (2004)CrossRefGoogle Scholar

Copyright information

© Instituto de Matemática e Estatística da Universidade de São Paulo 2019

Authors and Affiliations

  1. 1.IMECC-UNICAMPCampinasBrazil
  2. 2.DMA-UFVViçosaBrazil

Personalised recommendations