Advertisement

São Paulo Journal of Mathematical Sciences

, Volume 13, Issue 2, pp 663–677 | Cite as

Singularities of a surface given by Kenmotsu-type formula in Euclidean three-space

  • Luciana F. Martins
  • Kentaro SajiEmail author
  • Keisuke Teramoto
Original Article
  • 35 Downloads

Abstract

We study singularities of surfaces which are given by Kenmotsu-type formula with prescribed unbounded mean curvature.

Keywords

Singularities Prescribed mean curvature Wave fronts Frontals Cuspidal edges 

Mathematics Subject Classification

57R45 53A10 

Notes

References

  1. 1.
    Akutagawa, K., Nishikawa, S.: The Gauss map and spacelike surfaces with prescribed mean curvature in Minkowski \(3\)-space. Tohoku Math. J. 42, 67–82 (1990)Google Scholar
  2. 2.
    Arnol’d, V.I., Gusein-Zade, S.M., Varchenko, A.N.: Singularities of Differentiable Maps, Volume 1. Monodromy and Asymptotic, vol. 83. Birkhäuser Boston Inc, Boston, MA (1985)CrossRefGoogle Scholar
  3. 3.
    Bruce, J.W., West, J.M.: Functions on a crosscap. Math. Proc. Camb. Philos. Soc. 123(1), 19–39 (1998)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Fukui, T., Hasegawa, M.: Fronts of Whitney umbrella—a differential geometric approach via blowing up. J. Singul. 4, 35–67 (2012)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Fukunaga, T., Takahashi, M.: Evolutes of fronts in the Euclidean plane. J. Singul. 10, 92–107 (2014)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Hasegawa, M., Honda, A., Naokawa, K., Saji, K., Umehara, M., Yamada, K.: Intrinsic properties of surfaces with singularities. Int. J. Math. 26(4), 1540008 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Honda, A., Naokawa, K., Umehara, M., Yamada, K.: Isometric realization of cross caps as formal power series and its applications. Hokkaido Math. J. 48, 1–44 (2019)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Honda, A., Naokawa, K., Umehara, M., Yamada, K.: Isometric deformations of wave fronts at non-degenerate singular points. arXiv:1710.02999
  9. 9.
    Ishikawa, G.: Recognition Problem of Frontal Singularities. arXiv:1808.09594
  10. 10.
    Izumiya, S., Romero Fuster, M.C., Ruas, M.A.S., Tari, F.: Differential Geometry from a Singularity Theory Viewpoint. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2016)Google Scholar
  11. 11.
    Izumiya, S., Saji, K.: The mandala of Legendrian dualities for pseudo-spheres in Lorentz–Minkowski space and “flat” spacelike surfaces. J. Singul. 2, 92–127 (2010)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Izumiya, S., Saji, K., Takahashi, M.: Horospherical flat surfaces in hyperbolic \(3\)-space. J. Math. Soc. Jpn. 62(3), 789–849 (2010)Google Scholar
  13. 13.
    Izumiya, S., Saji, K., Takeuchi, N.: Flat surfaces along cuspidal edges. J. Singul. 16, 73–100 (2017)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Kenmotsu, K.: Weierstrass formula for surfaces of prescribed mean curvature. Math. Ann. 245(2), 89–99 (1979)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kokubu, M.: Application of a unified Kenmotsu-type formula for surfaces in Euclidean or Lorentzian three-space, preprint. arXiv:1711.05427
  16. 16.
    Kokubu, M., Rossman, W., Saji, K., Umehara, M., Yamada, K.: Singularities of flat fronts in hyperbolic \(3\)-space. Pac. J. Math. 221, 303–351 (2005)Google Scholar
  17. 17.
    Kossowski, M.: Realizing a singular first fundamental form as a nonimmersed surface in Euclidean \(3\)-space. J. Geom. 81(1–2), 101–113 (2004)Google Scholar
  18. 18.
    Magid, M.A.: Timelike surfaces in Lorentz \(3\)-space with prescribed mean curvature and Gauss map. Hokkaido Math. J. 19, 447–464 (1991)Google Scholar
  19. 19.
    Martins, L.F., Saji, K., Umehara, M., Yamada, K.: Behavior of Gaussian curvature and mean curvature near non-degenerate singular points on wave fronts, Geometry and Topology of Manifold. In: Springer Proceedings Mathematics Statistics, pp. 247–282 (2016)Google Scholar
  20. 20.
    Martins, L.F., Saji, K.: Geometric invariants of cuspidal edges. Can. J. Math. 68(2), 445–462 (2016)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Naokawa, K., Umehara, M., Yamada, K.: Isometric deformations of cuspidal edges. Tohoku Math. J. (2) 68(1), 73–90 (2016)Google Scholar
  22. 22.
    Oset Sinha, R., Tari, F.: Flat geometry of cuspidal edges. Osaka J. Math. 55(3), 393–421 (2018)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Saji, K., Umehara, M., Yamada, K.: The geometry of fronts. Ann. Math. 169, 491–529 (2009)MathSciNetCrossRefGoogle Scholar

Copyright information

© Instituto de Matemática e Estatística da Universidade de São Paulo 2019

Authors and Affiliations

  1. 1.Departamento de Matemática, Instituto de Biociências, Letras e Ciências ExatasUniversidade Estadual Paulista (Unesp)São José do Rio PretoBrazil
  2. 2.Department of Mathematics, Graduate School of ScienceKobe UniversityKobeJapan
  3. 3.Institute of Mathematics for IndustryKyushu UniversityNishi-kuJapan

Personalised recommendations