Advertisement

Isomorphism invariants for linear quasigroups

  • Jonathan D. H. SmithEmail author
  • Stefanie G. Wang
Article
  • 3 Downloads

Abstract

For a unital ring S, an S-linear quasigroup is a unital S-module, with automorphisms \(\rho \) and \(\lambda \) giving a (nonassociative) multiplication \(x\cdot y=x^\rho +y^\lambda \). If S is the field of complex numbers, then ordinary characters provide a complete linear isomorphism invariant for finite-dimensional S-linear quasigroups. Over other rings, it is an open problem to determine tractably computable isomorphism invariants. The paper investigates this isomorphism problem for \({\mathbb {Z}}\)-linear quasigroups. We consider the extent to which ordinary characters classify \({\mathbb {Z}}\)-linear quasigroups and their representations of the free group on two generators. We exhibit non-isomorphic \({\mathbb {Z}}\)-linear quasigroups with the same ordinary character. For a subclass of \({\mathbb {Z}}\)-linear quasigroups, equivalences of the corresponding ordinary representations are realized by permutational intertwinings. This leads to a new equivalence relation on \({\mathbb {Z}}\)-linear quasigroups, namely permutational similarity. Like the earlier concept of central isotopy, permutational similarity is intermediate between isomorphism and isotopy.

Keywords

Quasigroup Isotopy Group isotope T-quasigroup Ordinary character Permutation similarity 

Mathematics Subject Classification

20N05 

Notes

Acknowledgements

We are grateful to a referee for helpful comments on an earlier version of this paper.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. 1.
    Abraham, A., Dvorský, J., Ochodková, E., Snášel, V.: Large quasigroups in cryptography and their properties testing, NaBIC 2009, IEEE, 2010, 965–971 (2009).  https://doi.org/10.1109/NABIC.2009.5393884
  2. 2.
    Belyavskaya, G.B.: Abelian quasigroups are T-quasigroups. Quasigroups Relat Syst 1, 8–21 (1994)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Cameron, P.: Permutation Groups. Cambridge University Press, Cambridge (1999)CrossRefzbMATHGoogle Scholar
  4. 4.
    Drápal, A.: Group isotopes and a holomorphic action. Results Math. 54, 253–272 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Němec, P., Kepka, T.: “T-quasigroups”, I. Acta Univ. Carolinae-Math. et Phys. 12(1), 39–49 (1971)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Němec, P., Kepka, T.: “T-quasigroups”, II. Acta Univ. Carolinae-Math. et Phys. 12(2), 31–49 (1971)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Serre, J.-P.: Linear Representations of Finite Groups. Springer-Verlag, New York, NY (1977)CrossRefzbMATHGoogle Scholar
  8. 8.
    Scott, W.R.: Group Theory. Prentice-Hall, Englewood Cliffs, NJ (1964)zbMATHGoogle Scholar
  9. 9.
    Smith, J.D.H.: Representation Theory of Infinite Groups and Finite Quasigroups. Les Presses de l’Université de Montréal, Montreal (1986)zbMATHGoogle Scholar
  10. 10.
    Smith, J.D.H.: An Introduction to Quasigroups and Their Representations. Chapman and Hall/CRC, Boca Raton, FL (2007)zbMATHGoogle Scholar
  11. 11.
    Smith, J.D.H.: Groups, triality, and hyperquasigroups. J. Pure Appl. Algebra 216, 811–825 (2012)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Instituto de Matemática e Estatística da Universidade de São Paulo 2019

Authors and Affiliations

  1. 1.Department of MathematicsIowa State UniversityAmesUSA
  2. 2.Department of MathematicsTrinity CollegeHartfordUSA

Personalised recommendations