Some advances about the existence of compact involutions in semisimple Hopf algebras
Original Article
First Online:
Abstract
In this paper we show that all complex semisimple Hopf algebras of dimension less than 24 are compact quantum groups. To do this, we survey all the above algebras and show explicitly that they can be described by bicrossed products of group algebras and its duals. We also study the behaviour under twisting of compact quantum groups. Using this we show that certain families of triangular semisimple Hopf algebras are compact quantum groups.
Keywords
Compact quantum group Twisted Hopf algebra Semisimple Hopf algebraNotes
References
- 1.Abella, A.: Cosemisimple coalgebras. Ann. Sci. Math. Québec 30(2), 119–133 (2006)MathSciNetzbMATHGoogle Scholar
- 2.Abella, A., Ferrer, W., Haim, M.: Compact coalgebras, compact quantum groups and the positive antipode. São Paulo J. Math. Sci. 3(1), 191–227 (2009)MathSciNetzbMATHGoogle Scholar
- 3.Abella, A., Ferrer, W., Haim, M.: Some constructions of compact quantum groups. São Paulo J. Math. Sci. 6(1), 1–40 (2012)MathSciNetCrossRefGoogle Scholar
- 4.Abella, A., Freitas, D., Morgado, A.: Almost-involutive Hopf-Ore extensions of low dimension. São Paulo J. Math. Sci. 11(1), 133–147 (2016). https://doi.org/10.1007/s40863-016-0053-5 MathSciNetCrossRefzbMATHGoogle Scholar
- 5.Aldjaeff, E., Etingoff, P., Gelaki, S., Nyshych, D.: On twisting of finite-dimensional Hopf algebras. J. Algebra 256(2), 484–501 (2002)MathSciNetCrossRefGoogle Scholar
- 6.Andruskiewitsch, N.: Compact involutions of semisimple quantum groups. Czech. J. Phys. 44, 963–972 (1994)MathSciNetCrossRefGoogle Scholar
- 7.Andruskiewitsch, N., García, A.: arXiv:1512.01696v2 (to appear in Annali dell’ Università di Ferrara)
- 8.Andruskiewitsch, N., Natale, S.: Examples of self-dual Hopf algebras. J. Math. Sci. Univ. Tokio 6(1), 181–215 (1999)MathSciNetzbMATHGoogle Scholar
- 9.Beattie, M.: A survey of Hopf algebras of low dimension. Acta Appl. Math. 108(1), 19–31 (2009)MathSciNetCrossRefGoogle Scholar
- 10.Beattie, M., Garcia, G.A.: Classifying Hopf algebras of a given dimension. Contemp. Math. 585, 125–152 (2013)MathSciNetCrossRefGoogle Scholar
- 11.Dascalescu, S., Nastasescu, C., Raianu, S.: Hopf Algebras: An Introduction. Monographs and Textbooks in Pure and Applied Matehmatics. Marcel Dekker, New York (2001)zbMATHGoogle Scholar
- 12.David, M., Thiéry, N.M.: Exploration of finite dimensional Kac algebras and lattices of intermediate subfactors of irreducible inclusions. J. Algebra Appl. 10(5), 995–1106 (2011)MathSciNetCrossRefGoogle Scholar
- 13.Drinfeld, V.: Quantum groups. In: Proceedings of the International Congress of Mathematics, vol. 1, no. 2 (Berkeley 1987), pp. 798–820 (1987)Google Scholar
- 14.Drinfeld, V.: On almost cocommutative Hopf algebras. Leningr. Math. J. 1, 321–342 (1990)MathSciNetzbMATHGoogle Scholar
- 15.Dijkhuizen, M., Koornwinder, T.: CQG algebras: a direct algebraic approach to compact quantum groups. Lett. Math. Phys. 32(4), 315–330 (1994)MathSciNetCrossRefGoogle Scholar
- 16.Etingof, P., Gelaki, S.: The classification of triangular semismple and cosemisimple Hopf algebras over an algebraically closed field. Intern. Math. Res. Not. 5, 223–234 (2000)CrossRefGoogle Scholar
- 17.Enock, M., Schwartz, J.M.: Kac Algebras and Duality of Locally Compact Groups. Springer, Berlin (1992). (With a preface by Alain Connes, With a postface by Adrian Ocneanu)CrossRefGoogle Scholar
- 18.Fukuda, D.: Classification of Hopf algebras of dimension 18. Israel J. Math. 168, 119–123 (2008)MathSciNetCrossRefGoogle Scholar
- 19.Gelaki, S.: Quantum groups of dimension \(pq^2\). Israel J. Math. 102, 227–267 (1997)Google Scholar
- 20.Gelaki, S.: On the classsification of finite-dimensional triangular Hopf algebras. In: New directions in Hopf algebras. vol. 43, pp. 69–116, MSRI Publications (2002)Google Scholar
- 21.Guillot, P., Kassel, C.: Cohomology of invariant Drinfeld twists on group algebras. Int. Math. Res. Not. 2010(10), 1894–1939 (2010)MathSciNetzbMATHGoogle Scholar
- 22.Kobayashi, T., Masuoka, A.: A result extended from groups to Hopf algebras. Tsukuba J. Math. 21(1), 55–58 (1997)MathSciNetCrossRefGoogle Scholar
- 23.Kac, G.I.: Extension of groups to ring groups. Math. USSR Sbornik 5(3), 451–474 (1968)CrossRefGoogle Scholar
- 24.Kac, G., Paljutkin, V.: Finite ring groups. Trans. Moscow Math. Soc. 5, 251–294 (1966)Google Scholar
- 25.Kashina, Y.: Classification of semisimple Hopf algebras of dimension 16. J. Algebra 232, 617–663 (2000)MathSciNetCrossRefGoogle Scholar
- 26.Majid, S.: Foundations of Quantum Group Theory. Cambridge University Press, Cambridge (1995)CrossRefGoogle Scholar
- 27.Masuoka, A.: Semisimple Hopf algebras of dimension 6, 8. Israel J. Math. 92(1), 361–373 (1995)MathSciNetCrossRefGoogle Scholar
- 28.Masuoka, A.: Some further classifications results on semisimple Hopf algebras. Commun. Algebra 24(1), 307–329 (1996)MathSciNetCrossRefGoogle Scholar
- 29.Masuoka, A.: Faithfully flat forms and cohomology of Hopf algebra extensions. Commun. Algebra 25, 1169–1197 (1997)MathSciNetCrossRefGoogle Scholar
- 30.Masuoka, A.: Extensions of Hopf algebras, Trabajos de Matemtica 41/99 (Lecture Notes taken by Matias Graña) FaMAF. Universidad Nacional de Cordoba (1999)Google Scholar
- 31.Masuoka, A.: Hopf algebra extensions and cohomology. In: New Directions in Hopf Algebras. vol. 43, pp. 167–210. MSRI Publications (2002)Google Scholar
- 32.Masuoka, A.: Classification of semisimple Hopf algebras. Handb. Algebra 5, 429–455 (2008)MathSciNetzbMATHGoogle Scholar
- 33.Montgomery, S.: Hopf algebras and their actions on rings. CBMS, vol. 28. American Mathematical Society, Providence (1993)CrossRefGoogle Scholar
- 34.Movshev, M.: Twisting in group algebras of finite groups. Funct. Anal. Appl. 27, 240–244 (1994)MathSciNetCrossRefGoogle Scholar
- 35.Natale, S.: On semisimple Hopf algebras of dimension \(pq^2\). J. Algebra 221, 242–278 (1999)Google Scholar
- 36.Natale, S.: On semisimple Hopf algebras of dimension \(pq^r\). Algebras Represent. Theory 7(2), 173–188 (2004)Google Scholar
- 37.Sweedler, M.: Cocommutative Hopf algebras with antipode. Bull. Am. Math. Soc. 73(1), 126–128 (1967)MathSciNetCrossRefGoogle Scholar
- 38.Takesaki, M.: Theory of Operator Algebras I. Springer, Berlin (1979)CrossRefGoogle Scholar
- 39.Takeuchi, M.: Matched pair of groups and bismash products of Hopf algebras. Commun. Algebra 9(8), 841–882 (1981)MathSciNetCrossRefGoogle Scholar
- 40.Woronowicz, S.L.: Compact matrix pseudogroups. Commun. Math. Phys 111, 613–665 (1987)MathSciNetCrossRefGoogle Scholar
Copyright information
© Instituto de Matemática e Estatística da Universidade de São Paulo 2018