Decompositions of Banach spaces C(K) with few operators

  • Rogério Augusto dos Santos Fajardo
  • Alirio Gómez Gómez
  • Leonardo Pellegrini
Survey
  • 11 Downloads

Abstract

This survey studies properties of Banach spaces of the form C(K) with few operators, mostly related to the possible decompositions of such spaces. We discuss the classical theorems and constructions found in the literature, present some new results and open problems.

Keywords

Connected spaces C(KKoszmider spaces Weakly Koszmider spaces Few operators Lineability Indecomposable Banach space 

Mathematics Subject Classification

Primary 46E15 

Notes

Acknowledgements

The authors thank Piotr Koszmider for helpful suggestions and remarks during his visit to University of São Paulo.

References

  1. 1.
    Argyros, S.A., Haydon, R.: A hereditarily indecomposable \({\cal{L}}_\infty \)-space that solves the scalar-plus-compact problem. J. Funct. Anal. 262(3), 825–849 (2012)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Áviles, A., Koszmider, P.: A continuous image of a Radon–Nikodým compact space which is not Radon–Nikodým. Duke Math. J. 162(12), 2285–2299 (2013)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bernal-González, L.: Pellegrino, D.l., Seoane-Sepúlveda, J.B.: Linear subsets of nonlinear sets in topological vector spaces. Bull. Am. Math. Soc. 51(1), 71–130 (2014)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bernal-González, L., Cabrera, M.Ordóñez: Lineability criteria, with applications. J. Funct. Anal. Appl. 266, 3997–4025 (2014)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bessaga, C., Pełczyński, A.: Spaces of continuous functions. IV. On isomorphical classification of spaces of continuous functions. Studia Math. 19, 53–62 (1960)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Diestel, J., Uhl Jr., J.J.: Vector Measures. Mathematical Surveys 15. American Mathematical Society, Providence (1977)CrossRefMATHGoogle Scholar
  7. 7.
    Dunford, N., Schwartz, J.: Linear Operators; Part I. General Theory. Interscience Publishers, INC., New York (1967). (Fourth printing)MATHGoogle Scholar
  8. 8.
    Fajardo, R.: An indecomposable Banach space of continuous functions which has small density. Fund. Math. 202(1), 43–63 (2009)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Fajardo, R.: Essentially incomparable Banach spaces of continuous functions. Bull. of Polish Acad. Sci. Math. 58, 247–258 (2010)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Fajardo, R.: Quotients of indecomposable Banach spaces of continuous functions. Studia Math. 212(3), 259–283 (2012)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Fajardo, R., Kaufmann, P.L., Pellegrini, L.: Spaceability in sets of operators on \(C(K)\). Topol. Appl. 160, 387–393 (2013)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Fremlin, D.H.: Consequences of Martin’s axiom. Cambridge University Press, Cambridge (1984)CrossRefMATHGoogle Scholar
  13. 13.
    Gowers, W.T., Maurey, B.: Banach spaces with small spaces of operators. Math. Ann. 307, 543–568 (1997)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Gurariy, V.I., Quarta, L.: On lineability of sets of continuous functions. J. Math. Anal. Appl. 294(1), 62–72 (2004)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Koszmider, P.: On decompositions of Banach spaces of continuous functions on Mrówka’s spaces. Proc. Math. Soc. 133(7), 2137–2146 (2005)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Koszmider, P.: Banach spaces of continuous functions with few operators. Math. Annalen 300, 151–183 (2004)MathSciNetMATHGoogle Scholar
  17. 17.
    Koszmider, P.: A space \(C(K)\) where all nontrivial complemented subspaces have big densities. Studia Math. 168(2), 109–127 (2005)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Koszmider, P.: On large indecomposable Banach spaces. J. Funct. Anal. 364(8), 1779–1805 (2013)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Koszmider, P.: A survey on Banach spaces \(C(K)\) with few operators. Rev. R. Acad. Cienc. Exactas Fís. Nat. A Math. RACSAM 104(2), 309–326 (2010)MathSciNetMATHGoogle Scholar
  20. 20.
    Koszmider, P., Martín, M., Merí, J.: Extremely non-complex \(C(K)\) spaces. J. Math. Anal. Appl. 350(2), 601–615 (2009)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Koszmider, P., Shelah, S., Świetek, J.: There is no bound on size of indecomposable Banach spaces. Preprint: http://arxiv.org/pdf/1603.01753v1.pdf
  22. 22.
    Pełczyński, A.: On strictly singular and strictly non-singular operators I. Bull. Acad. Polon. Sc. Ser. Sci. Math. Astronom. Phys. 13, 31–41 (1965)MATHGoogle Scholar
  23. 23.
    Plebanek, G.: A construction of a Banach space \(C(K)\) with few operators. Topol. Appl. 143, 217–239 (2004)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Schlackow, I.: Centripetal operators and Koszmider spaces. Topol. Appl. 155(11), 1227–1236 (2008)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Semadeni, Z.: Banach Spaces of Continuous Functions. PWN Polish Scientific Publishers, Warsaw (1971)Google Scholar
  26. 26.
    Shelah, S.: A Banach space with few operators. Israel J. Math. 30(1–2), 181–191 (1978)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Shelah, S., Steprāns, J.: A Banach space on which there are few operators. Proc. Am. Math. Soc. 104(1), 101–105 (1988)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Instituto de Matemática e Estatística da Universidade de São Paulo 2018

Authors and Affiliations

  1. 1.Instituto de Matemática e EstatísticaUniversidade de São PauloSão PauloBrazil

Personalised recommendations