Weak T-coalgebra DT(H) and its representation category

  • Ling JiaEmail author


With the aim of exploring categories of weak \((\alpha ,\beta )\)-Yetter–Drinfeld modules, this paper constructs a weak T-coalgebra DT(H) and shows that its representation category coincides with a braided T-category \(\mathcal {YD}(H)\) having all the categories of weak \((\alpha ,\beta )\)-Yetter–Drinfeld modules as components.


Weak (\(\alpha , \beta \))-Yetter–Drinfeld module Braided T-category Weak generalized diagonal crossed product 



The author would like to thank the referee for his/her constructive comments.


  1. 1.
    Bulacu, D., Panaite, F., Van Oystaeyen, F.: Generalized diagonal crossed products ans smash products for quasi-Hopf algebras: applications. Commun. Math. Phys. 266, 355–399 (2006)CrossRefzbMATHGoogle Scholar
  2. 2.
    Hausser, F., Nill, F.: Diagonal crossed products by duals of quasi-quantum group. Rev. Math. Phys. 11, 553–629 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Caenepeel, S., Militaru, G., Zhu, S.: Frobenius and Separable Functors for Generalized Module Categories and Nonlinear Equations. Lectures Notes in Mathematics, vol. 1787. Springer, Berlin (2002)CrossRefzbMATHGoogle Scholar
  4. 4.
    Majid, S.: Quantum double for quasi-Hopf algebras. Lett. Math. Phys. 45, 1–9 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Panaite, F., Staic, M.: Generalized (anti) Yetter–Drinfeld modules as components of a braided T-category. Isr. J. Math. 158, 349–365 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Nikshych, D., Vainerman, L.: Finite quantum groupoids and their applications. In: Montgomery, S., Schneider, H.-J. (eds.) New Directions in Hopf Algebras, vol. 43, pp. 211–262. Mathematical Sciences Research Institute Publications, Cambridge University Press, Cambridge (2002)Google Scholar
  7. 7.
    Böhm, G., Nill, F., Szlachanyi, K.: Weak Hopf algebras (I): integral theory and \(C^{*}\)-structure. J. Algebra 221, 385–438 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Böhm, G., Szlachanyi, K.: Weak Hopf algebras (II): representation theory, dimensions and the Markov trace. J. Algebra 233(1), 156–212 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Jia, L.: Yetter–Drinfeld \(\pi \)-modules over weak T-coalgebras. Bull. Braz. Math. Soc. New Ser. 43(3), 375–396 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Caenepeel, S., Wang, D., Yin, Y.: Yetter–Drinfeld modules over weak Hopf algebras and the center construction. Ann. Univ. Ferrara Sez. VII Sci. Mat. 51, 68–98 (2005)Google Scholar
  11. 11.
    Zunino, M.: Double construction for crossed Hopf coalgebras. J. Algebra 278, 43–75 (2004)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Instituto de Matemática e Estatística da Universidade de São Paulo 2019

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsLudong UniversityYantaiChina

Personalised recommendations