Advertisement

Tropical Plant Pathology

, Volume 44, Issue 6, pp 519–532 | Cite as

Etiology and distribution of foliar fungal diseases of citrus in Panama

  • Vidal Aguilera-CogleyEmail author
  • Antonio Vicent
Original Article

Abstract

The etiology and distribution of foliar fungal diseases of citrus in Panama were studied in this work. In total, 85 orchards spanning six provinces were surveyed from 2011 to 2013. Symptoms observed ranged from yellow-brown spots on the abaxial surface of the leaves, brown lesions on petals, twig dieback as well as raised pustules on leaves and fruit. Representative fungal isolates obtained from symptomatic plant tissues were identified based on morphological characteristics, sequences of the ITS, EF1-α and TUB2 loci, and pathogenicity tests. Citrus greasy spot, caused by Zasmidium citri-griseum (=Mycosphaerella citri), was identified as the most prevalent fungal disease of citrus in Panama, confirmed in 68.2% of the orchards. Postbloom fruit drop (PFD) and Key lime anthracnose, caused by Colletotrichum acutatum sensulato, and melanose, caused by Diaporthe citri, were identified for the first time in Panama. Citrus scab, caused by Elsinoë fawcettii, was also detected. Greasy spot was found mainly in areas with a tropical monsoon climate (Am) and to a lesser extent in tropical savanna (Aw) and tropical rainforest (Af) climates. Melanose, PFD and citrus scab were detected only in areas with Am and Af climates. Information about the etiology and geographic distribution of fungal diseases in Panama will help to design effective strategies for disease management.

Keywords

Central America Colletotrichum acutatum sensulato Diaporthe citri Elsinoë fawcettii Mycosphaerella citri Tropical climate 

Notes

Acknowledgements

Research partially funded by ‘Programa de Formación de los INIA Iberoamerica’, INIA RTA2010-00105-00-00-FEDER and IDIAP 501.B.1.06. We thank J. Martínez-Minaya (UV) for assistance in the digital maps of Panama with R.

References

  1. Agostini JP, Timmer LW, Mitchell DJ (1992) Morphological and pathological characteristics of strains of Colletotrichum gloeosporioides from citrus. Phytopathology 82:1377–1382CrossRefGoogle Scholar
  2. Agostini JP, Bushong PM, Bhatia A, Timmer LW (2003) Influence of environmental factors on severity of citrus scab and melanose. Plant Dis 87:1102–1106PubMedCrossRefGoogle Scholar
  3. Aguilera-Cogley VA, Berbegal M, Català S, Brentu FC, Armengol J, Vicent A (2017) Characterization of Mycosphaerellaceae species associated with citrus greasy spot in Panama and Spain. PLoS One 12:e0189585PubMedPubMedCentralCrossRefGoogle Scholar
  4. Agustí M, Zaragoza S, Bleiholder H, Buhr L, Hack H, Klose R, Stauss R (1997) Adaptation de l’échelle BBCH à la description des stades phénologiques des agrumes du genre Citrus. Fruits 52:287–295Google Scholar
  5. Alves A, Crous PW, Correia A, Phillips AJ (2008) Morphological and molecular data reveal cryptic speciation in Lasiodiplodia theobromae. Fungal Divers 28:1–13Google Scholar
  6. Bitancourt AA, Jenkins AE (1936) Elsinoë fawcetti, the perfect stage of the citrus scab fungus. Phytopathology 26:393–396Google Scholar
  7. Brown AE, Sreenivasaprasad S, Timmer LW (1996) Molecular characterization of slow–growing orange and key lime anthracnose strains of Colletotrichum from citrus as C. acutatum. Phytopathology 86:523–527CrossRefGoogle Scholar
  8. CCKP, Climate Change Knowledge Portal (2018) Global Climate Data. Available at: http://sdwebx.worldbank.org/climateportal/index.cfm?page=country_historical_climate&ThisRegion=North%20America&ThisCCode=PAN. Accessed 20 July 2018
  9. Choi YW, Hyde KD, Ho W (1999) Single spore isolation of fungi. Fungal Divers 3:28–39Google Scholar
  10. Crous PW, Verkley GJM, Groenewald JZ, Samson RA (2009) Fungal biodiversity. CBS Laboratory manual series 1. Centraalbureau voor Schimmelcultures, Utrecht, 269 pp.Google Scholar
  11. Damm U, Cannon PF, Woudenberg JH, Crous PW (2012) The Colletotrichum acutatum species complex. Stud Mycol 73:37–113PubMedPubMedCentralCrossRefGoogle Scholar
  12. De Goes A, Garrido R, Reis R, Baldassari RB, Soares M (2008) Evaluation of fungicide applications to sweet orange at different flowering stages for control of postbloom fruit drop caused by Colletotrichum acutatum. Crop Prot 27:71–76CrossRefGoogle Scholar
  13. Dhingra OD, Sinclair JB (1995) Basic plant pathology methods. CRC Press Inc., FloridaGoogle Scholar
  14. Dyko BJ, Mordue JEM (1979) Colletotrichum acutatum. No. 630 in: CMI Descriptions of pathogenic fungi and bacteria. Commonwealth Mycological Institute, KewGoogle Scholar
  15. EPPO, European and Mediterranean Plant Protection Organization (2019) EPPO Global Database, Phyllosticta citricarpa. Available at: http://gd.eppo.int/taxon/GUIGCI. Accessed 22 May 2019
  16. Fagan H (1979) Postbloom fruit drop, a new disease of citrus associated with a form of Colletotrichum gloeosporioides. Ann Appl Biol 91:13–20CrossRefGoogle Scholar
  17. Fan XL, Barreto RW, Groenewald JZ, Bezerra JD, Pereira OL, Cheewangkoon R, Crous PW (2017) Phylogeny and taxonomy of the scab and spot anthracnose fungus Elsinoë (Myriangiales, Dothideomycetes). Stud Mycol 87:1–41PubMedPubMedCentralCrossRefGoogle Scholar
  18. FAO, Food and Agriculture Organization of the United Nations (2016) Crop production database FAOSTAT. Available at: http://www.fao.org. Accessed 17 July 2018
  19. Fawcett HS (1912) The cause of stem end rot of citrus fruits (Phomopsis citri n. sp.). Phytopathology 2:109–113Google Scholar
  20. Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61:1323–1330PubMedPubMedCentralGoogle Scholar
  21. Hidalgo H, Sutton TB, Arauz F (1997) Epidemiology and control of citrus greasy spot on Valencia orange in the humid tropics of Costa Rica. Plant Dis 81:1015–1022PubMedCrossRefGoogle Scholar
  22. Hijmans RJ (2014) Raster: geographic data analysis and modeling. R package version 2.2–31. Available at: http://CRAN.R-project.org/package=raster
  23. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  24. Huang F, Chen GQ, Hou X, Fu YS, Cai L, Hyde KD, Li HY (2013a) A Colletotrichum species associated with cultivated citrus in China. Fungal Divers 61:61–74CrossRefGoogle Scholar
  25. Huang F, Hou X, Dewdney MM, Fu YS, Chen GQ, Hyde KD, Li HY (2013b) Diaporthe species occurring on citrus in China. Fungal Divers 61:237–250CrossRefGoogle Scholar
  26. Hyun JW, Paudyal DP (2015) Improved method to increase conidia production from isolates of different pathotypes of citrus scab pathogen Elsinoë spp. Res Plant Dis 21:231–234CrossRefGoogle Scholar
  27. Lima W, Sposito M, Amorim L, Gonçalves F, De Filho P (2011) Colletotrichum gloeosporioides, a new causal agent of citrus postbloom fruit drop. Eur J Plant Pathol 131:157–165CrossRefGoogle Scholar
  28. McGovern R, Seijo T, Hendricks K, Roberts P (2012) New report of Colletotrichum gloeosporioides causing postbloom fruit drop on citrus in Bermuda. Can J Plant Pathol 34:187–194CrossRefGoogle Scholar
  29. MIDA, Ministerio de Desarrollo Agropecuario de Panamá (2016) Dirección Nacional de Agricultura – Programa Nacional de FrutalesGoogle Scholar
  30. Mondal SN, Timmer LW (2006) Greasy spot, a serious endemic problem for citrus production in the Caribbean Basin. Plant Dis 90:532–538PubMedCrossRefGoogle Scholar
  31. Mondal SN, Agostini JP, Zhang L, Timmer LW (2004) Factors affecting pycnidium production of Diaporthe citri on detached citrus twigs. Plant Dis 88:379–382PubMedCrossRefGoogle Scholar
  32. Mondal SN, Bhatia A, Shilts T, Timmer LW (2005) Baseline sensitivities of fungal pathogens of fruit and foliage of citrus to azoxystrobin, pyraclostrobin, and fenbuconazole. Plant Dis 89:1186–1194PubMedCrossRefGoogle Scholar
  33. Orozco-Santos (1995) Enfermedades presentes y potenciales de los cítricos en México. Universidad Autónoma de Chapingo, México. 150 pGoogle Scholar
  34. Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen–Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644CrossRefGoogle Scholar
  35. Peres NA, Souza NL, Peever TL, Timmer LW (2004) Benomyl sensitivity of isolates of Colletotrichum acutatum and C. gloeosporioides from citrus. Plant Dis 88:125–130PubMedCrossRefGoogle Scholar
  36. Peres NA, Timmer LW, Adaskaveg JE, Correll JC (2005) Lifestyles of Colletotrichum acutatum. Plant Dis 89:784–796PubMedCrossRefGoogle Scholar
  37. Peres NA, Mackenzie SJ, Peever TL, Timmer LW (2008) Postbloom fruit drop of citrus and key lime anthracnose are caused by distinct phylogenetic lineages of Colletotrichum acutatum. Phytopathology 98:345–352PubMedCrossRefGoogle Scholar
  38. Pinho DB, Lopes UP, Pereira OL, Silveira AL, de Goes A (2015) Colletotrichum abscissum Pinho & O.L. Pereira, sp. nov. Persoonia 34:236–237Google Scholar
  39. Quaedvlieg W, Binder M, Groenewald J, Summerell BA, Carnegie AJ, Burgess TI, Crous PW (2014) Introducing the consolidated species concept to resolve species in the Teratosphaeriaceae. Persoonia 33:1–40PubMedPubMedCentralCrossRefGoogle Scholar
  40. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna. Available at: http://www.R-project.org/
  41. Rossman A, Udayanga D, Castlebury LA, Hyde KD (2013) Proposal to conserve the name Phomopsis citri HS Fawc. (Diaporthe citri), with a conserved type, against Phomopsis citri (Sacc.) Traverso & Spessa (Ascomycota: Diaporthales: Diaporthaceae). Taxon 62:627CrossRefGoogle Scholar
  42. Schubert T, Dewdney M, Peres N, Palm M, Jeyaprakash A, Sutton B, Mondal S, Wang N, Rascoe J, Picton D (2014) First report of Guignardia citricarpa associated with citrus black spot on sweet orange (Citrus sinensis) in North America. Plant Dis 98:780–789CrossRefGoogle Scholar
  43. Silva AO, Savi DC, Gomes FB, Gos FM, Silva GJ, Glienke C (2017) Identification of Colletotrichum species associated with postbloom fruit drop in Brazil through GAPDH sequencing analysis and multiplex PCR. Eur J Plant Pathol 147:731–748CrossRefGoogle Scholar
  44. Timmer LW (1999) Diseases of fruit and foliage. In: Timmer LW, Duncan LW (eds) Citrus health management. APS Press, St. Paul, pp 107–115Google Scholar
  45. Timmer LW (2000a) Postbloom fruit drop. In: Timmer LW, Garnsey SM, Graham JH (eds) Compendium of citrus diseases. APS Press, St. Paul, pp 22–23CrossRefGoogle Scholar
  46. Timmer LW (2000b) Scab diseases. In: Timmer LW, Garnsey SM, Graham JH (eds) Compendium of citrus diseases. APS Press, St. Paul, pp 31–33CrossRefGoogle Scholar
  47. Timmer LW, Gottwald TR (2000) Greasy spot and similar diseases. In: Timmer LW, Garnsey SM, Graham JH (eds) Compendium of citrus diseases. APS Press, St. Paul, pp 25–28CrossRefGoogle Scholar
  48. Timmer LW, Zitko SE (1992) Timing of fungicide applications for control of postbloom fruit drop of citrus in Florida. Plant Dis 76:820–823CrossRefGoogle Scholar
  49. Timmer LW, Agostini JP, Zitko SE, Zulfiqar M (1994) Postbloom fruit drop, an increasingly prevalent disease of citrus in the America. Plant Dis 78:329–334CrossRefGoogle Scholar
  50. Timmer LW, Peever TL, Solel Z, Akimitsu K (2003) Alternaria diseases of citrus–novel pathosystems. Phytopathol Mediterr 42:99–112Google Scholar
  51. Timmer LW, Mondal SN, Peres NA, Bhatia A (2004) Fungal diseases of fruit and foliage of citrus trees. In: Naqvi SMH (Eds.) Diseases of fruits and vegetables volume I (pp. 191-227). Springer DordrechtGoogle Scholar
  52. Traverso GB, Spessa C (1910) La flora micologica del Portugallo, Saggio. Boletim da Sociedade Broteriana 25:26–187Google Scholar
  53. Udayanga D, Castlebury L, Rossman A, Hyde K (2014) Species limits in Diaporthe: molecular re-assessment of D. citri, D. cytosporella, D. foeniculina and D. rudis. Persoonia 32:83–101PubMedPubMedCentralCrossRefGoogle Scholar
  54. White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetic. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols, a guide to methods and applications. Academic Press, San Diego, pp 315–322Google Scholar
  55. Whiteside JO (1970) Etiology and epidemiology of citrus greasy spot. Phytopathology 60:1409–1414CrossRefGoogle Scholar
  56. Whiteside JO (1974) Environmental factors affecting infection of citrus leaves by Mycosphaerella citri. Phytopathology 64:115–120CrossRefGoogle Scholar
  57. Whiteside JO (1986) Semiselective media for the isolation of Elsinöe fawcettii from citrus scab pustules. Plant Dis 70:204–206CrossRefGoogle Scholar
  58. Whiteside JO (2000) Melanosis. In: Timmer LW, Garnsey SM, Graham JH (eds) Compendium of citrus diseases. APS Press, St. Paul, pp 28–30Google Scholar

Copyright information

© Sociedade Brasileira de Fitopatologia 2019

Authors and Affiliations

  1. 1.Grupo de Investigación de Protección Vegetal, Centro de Investigación Agropecuaria DivisaInstituto de Investigación Agropecuaria de Panamá (IDIAP)HerreraPanamá
  2. 2.Centre de Protecció Vegetal i BiotecnologiaInstitut Valencià d’Investigacions Agràries (IVIA)Moncada, ValenciaSpain

Personalised recommendations