Advertisement

Tropical Plant Pathology

, Volume 44, Issue 1, pp 104–111 | Cite as

Within-field variability and spatial analysis of white mould and soybean crop attributes in southern Brazil

  • Carlos R. Wutzki
  • Ayrton Berger-Neto
  • Edilaine M. Grabicoski
  • Luciane Henneberg
  • Felipe F. Sartori
  • David S. Jaccoud-FilhoEmail author
Article
  • 188 Downloads

Abstract

White mould (Sclerotinia sclerotiorum) is a damaging disease of soybean crops in Brazil. Within-field spatial analyses of white mould disease and inoculum, as well as yield components at the field level may provide insights into their relationship, but this information is lacking in the country. During three years, spatially explicit within-field data on white mould and soybean stand and yield were measured at three fields, with sizes ranging from 4 to 12 ha, located in the Campos Gerais region of Paraná State, Brazil and all naturally infested with sclerotia. Crop stand, white mould incidence and severity, soybean yield and sclerotia collected at harvest were assessed in quadrats of 7.2 m2 distant from each other by 8 to 50 m. Soilborne sclerotia were counted in four quadrats (0.25 m2 and 0.05 m depth) at each sampling point. The semivariograms fitted the pure nugget effect, linear, spherical, and exponential models. The pure nugget model best fitted sclerotia data, suggesting a random distribution. Significant and positive associations were found between disease incidence and sclerotia amount at harvest, which were both negative associated with yield.

Keywords

Glycine max Sclerotinia sclerotiorum Incidence Sclerotia Semivariograms Severity Plant attributes 

Notes

Supplementary material

40858_2018_272_MOESM1_ESM.docx (19 kb)
ESM 1 (DOCX 19 kb)

References

  1. Adams PB, Ayers WA (1979) Ecology of Sclerotinia species. Phytopathology 69:896–899CrossRefGoogle Scholar
  2. Alexopoulos CJ, Mims CW, Blackwell M (1996) Introductory mycology. 4th Ed. New York, USA. John Wiley & SonsGoogle Scholar
  3. Boland GJ, Hall R (1988) Relationships between the spatial pattern and number of apothecia of Sclerotinia sclerotiorum and stem rot of soybean. Plant Pathology 37:329–336CrossRefGoogle Scholar
  4. Boland GJ, Hall R (1994) Index of plant hosts to Sclerotinia sclerotiorum. Canadian Journal of Plant Pathology 16:93–108CrossRefGoogle Scholar
  5. Bolton MD, Thomma BPHJ, Nelson BD (2006) Sclerotinia sclerotiorum (lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Molecular Plant Pathology 7:1–16CrossRefGoogle Scholar
  6. Campbell CL, Noe JP (1985) The spatial analysis of soilborne pathogens and root diseases. Annual Review of Phytopathology 23:129–148CrossRefGoogle Scholar
  7. Carvalho CG, Arias CAA, Toledo JFF, Almeida LA, Kiihl RAS, Oliveira MF, Hiromoto DM, Takeda C (2003) Proposta de classificação dos coeficientes de variação em relação à produtividade e altura da planta de soja. Pesquisa Agropecuária Brasileira 38:187–193CrossRefGoogle Scholar
  8. Chellemi DO, Rohrbach KG, Yost RS, Sonoda RM (1988) Analysis of the spatial pattern of plant pathogens and diseased plants using geostatistics. Phytopathology 78:221–226CrossRefGoogle Scholar
  9. Clarkson JP, Coventry E, Kitchen J, Carter HE, Whipps JM (2013) Population structure of Sclerotinia sclerotiorum in crop and wild hosts in the UK. Plant Pathology 62:309–324CrossRefGoogle Scholar
  10. CONAB (2018) Acompanhamento da safra brasileira de grãos, v. 5 - safra 2017/18 - quinto levantamento. Available at: https://www.conab.gov.br/info-agro/safras?view=default. Acessed on February 14th, 2018
  11. Cressie NAC (1993) Statistics for spatial data. Revised ed. New York, USA. John Wiley and SonsGoogle Scholar
  12. Danielson GA, Nelson BD, Helms TC (2004) Effect of Sclerotinia stem rot on yield of soybean inoculated at different growth stages. Plant Disease 88:297–300CrossRefGoogle Scholar
  13. De Bary A (1887) Comparative morphology and biology of the fungi, mycetozoa and bacteria Oxford, UK. Claredon PressGoogle Scholar
  14. Fall ML, Willbur JF, Smith DL, Byrne AM, Chilvers MI (2018) Spatiotemporal distribution pattern of Sclerotinia sclerotiorum apothecia is modulated by canopy closure and soil temperature in an irrigated soybean field. Plant Disease 102:1794–1802CrossRefGoogle Scholar
  15. Fehr WR, Caviness CE, Burmood DT, Pennington JS (1971) Stage of development descriptions for soybeans, Glycine max (L.) Merrill. Crop Science 11:929–931CrossRefGoogle Scholar
  16. Ferraz LCL, Nasser LCB, Café-Filho AC (2011) Viabilidade de escleródios de Sclerotinia sclerotiorum e incidência de fungos antagonistas em solo de Cerrado. Summa Phytopathologica 37:208–210CrossRefGoogle Scholar
  17. Filipe JAN, Maule MM, Gilligan CA (2004) Analytical models for the patchy spread of plant disease. Bulletin of Mathematical Biology 66:1027–1037CrossRefGoogle Scholar
  18. Fleischer SJ, Blom PE, Weisz R (1999) Sampling in precision IPM: when the objective is a map. Phytopathology 89:1112–1118CrossRefGoogle Scholar
  19. Franzblau AN (1958) A primer of statistics for non-statisticians. New York, USA. Harcourt Brace & CompantGoogle Scholar
  20. Gilligan CA (1983) Modeling of soilborne pathogens. Annual Review of Phytopathology 21:45–64CrossRefGoogle Scholar
  21. Gosme M, Lucas P (2010) Effect of host and inoculum patterns on take-all disease of wheat incidence, severity and disease gradient. European Journal of Plant Pathology 129:119–131CrossRefGoogle Scholar
  22. Guerra P. (1988) Geoestatística operacional. Brasília, Brasil. Ministério das Minas e Energias, Departamento Nacional de Produção Mineral, p.145.Google Scholar
  23. Hammond CN, Cummings TF, Johnson DA (2008) Deposition of ascospores of Sclerotinia sclerotiorum in and near potato fields and the potential to impact efficacy of a biocontrol agent in the Columbia Basin. American Journal of Potato Research 8:353–360CrossRefGoogle Scholar
  24. Hoffman DD, Hartman GL, Mueller DS, Leitz RA, Nickell CD, PederseN WL (1998) Yield and seed quality of soybean cultivars infected with Sclerotinia sclerotiorum. Plant Disease 82:826–829CrossRefGoogle Scholar
  25. Hughes G (1999) Sampling for decision making in crop loss assessment and pest management: introduction. Phytopathology 89:1080–1083CrossRefGoogle Scholar
  26. Hughes G, Madden L (1999) Sampling for plant disease incidence. Phytopathology 89:1088–1103CrossRefGoogle Scholar
  27. Jaccoud-Filho DS, Manosso-Neto MO, Vrisman CM, Henneberg L, Grabicoski EMG, Pierre MLC, Berger-Neto A, Sartori FF, Demarch VB, Rocha CH (2010) Análise, distribuição e quantificação do “mofo branco” em diferentes regiões produtoras do estado do Paraná. In: XXXI Reunião de Pesquisa de Soja da Região Central do Brasil, Resumos... Londrina, PR. Embrapa Soja. p. 226–228Google Scholar
  28. Jaccoud-Filho DS, Sartori FF, Manosso-Neto M, Vrisman CM, Pierre MLC, Berger-Neto A, Túllio HE, Justino A, Fonseca A, Zanon S (2016) Influence of row spacing and plant population density on management of “white mould” in soybean in southern Brazil. Australian Journal of Crop Science 10:161–168Google Scholar
  29. Jones SJ, Gent DH, Pethybridge SJ, Hay FS (2011) Spatial characteristics of white mould epidemics and the development of sequential sampling plans in Australian bean fields. Plant Pathology 60:1169–1182CrossRefGoogle Scholar
  30. Juliatti FC, Crato FF, Juliatti FAC, Couto KR, Juliatti BCM (2013) Diagrammatic scale for the evaluation of white mould on soybean. Bioscience Journal 29:676–680Google Scholar
  31. Krishnamoorthy KK, Sankaralingam A, Nakkeeran S (2017) Effect of soil moisture and duration on the viability of sclerotia of Sclerotinia sclerotiorum causing head rot of cabbage. Journal of Soil Biology and Ecology 37:7–14Google Scholar
  32. Kurle JE, Grau CR, Oplinger ES, Mengistu A (2001) Tillage, crop sequence, and cultivar effects on Sclerotinia stem rot incidence and yield in soybean. Agronomy Journal 93:973–982CrossRefGoogle Scholar
  33. Lehner MS, Pethybridge SJ, Meyer MC, Del Ponte EM (2017) Meta-analytic modelling of the incidence–yield and incidence–sclerotial production relationships in soybean white mould epidemics. Plant Pathology 66:460–468CrossRefGoogle Scholar
  34. McKinney HH (1923) Influence of soil temperature and moisture on infection of wheat seedlings by Helminthosporium sativum. Journal of Agricultural Research 26:195–218Google Scholar
  35. Mila AL, Carriquiry AL, Yang XB (2004) Logistic regression modeling of prevalence of soybean Sclerotinia stem rot in the north-central region of the United States. Plant Disease 94:102–110Google Scholar
  36. Minasny B, McBratney AB, Whelan BM (2005) VESPER version 1.62. Sydney, AustraliaGoogle Scholar
  37. Nasser LCB, Azevedo J, Ferraz LCL, Café-Filho AC (1999) Effects of soil moisture, organic matter and grass mulching on the carpogenic germination of sclerotia and infection of bean by Sclerotinia sclerotiorum. Plant Pathology 48:77–82CrossRefGoogle Scholar
  38. Peltier AJ, Bradley C, Chilvers MI, Malvick DK, Mueller DS, Kiersten WA, Esker PD (2012) Biology, yield loss and control of Sclerotinia stem rot of soybean. Journal of Integrated Pest Management 3:1–7CrossRefGoogle Scholar
  39. Purdy LH (1979) Sclerotinia sclerotiorum : history, diseases and symptomatology, host range, geographic distribution, and impact. Phytopathology 69:875CrossRefGoogle Scholar
  40. QGIS Development Team (2016) QGIS geographic information system - open source. Zurich, SwitzerlandGoogle Scholar
  41. R Development Core Team (2013) R: A language and environment for statistical computing. Vienna, AustriaGoogle Scholar
  42. Schwartz HF, Steadman JR (1978) Factors affecting sclerotium populations of, and apothecium production by, Sclerotinia sclerotiorum. Phytopathology 68:383–388CrossRefGoogle Scholar
  43. Statcamp (2014) Action Stat - Consultoria em estatistica e qualidade. São Carlos, BrazilGoogle Scholar
  44. Steadman JR (1983) White Mould - a serious yield-limiting disease of bean. Plant Disease 67:346–350CrossRefGoogle Scholar
  45. USDA (2018) Agricultural Supply and Demand Estimates. Available at: https://www.usda.gov/oce/commodity/wasde/latest.pdf. Accessed on February 17th, 2018
  46. Webster R, McBratney AB (1989) On the Akaike information criterion for choosing models for variograms of soil properties. Journal of Soil Science 40:493–496CrossRefGoogle Scholar
  47. Wutzki CR, Jaccoud-Filho DS, Berger-Neto A, Tullio HE, Juliatti FC, Nascimento AJ (2016) Reduction of white mould level on soybean by fungicide management strategies. Bioscience Journal 32:642–651CrossRefGoogle Scholar

Copyright information

© Sociedade Brasileira de Fitopatologia 2019

Authors and Affiliations

  • Carlos R. Wutzki
    • 1
  • Ayrton Berger-Neto
    • 1
  • Edilaine M. Grabicoski
    • 1
    • 2
  • Luciane Henneberg
    • 1
  • Felipe F. Sartori
    • 1
    • 3
  • David S. Jaccoud-Filho
    • 1
    Email author
  1. 1.Departamento de Fitotecnia e FitossanidadeUniversidade Estadual de Ponta GrossaPonta GrossaBrazil
  2. 2.Departamento de AgronomiaUniversidade Estadual de MaringáMaringáBrazil
  3. 3.Departamento de Produção Vegetal, Escola Superior de Agricultura “Luiz de Queiroz”Universidade de São PauloPiracicabaBrazil

Personalised recommendations