Advertisement

Delving into the Two-Dimensional Structure of a Cold Eddy East of Taiwan and Its Impact on Acoustic Propagation

  • Cheng Chen
  • Ya Gao
  • Fenggang YanEmail author
  • Tao Jin
  • Zhiquan Zhou
Original Paper
  • 8 Downloads

Abstract

A cold eddy was detected east of Taiwan. The two-dimensional (2-D) eddy structure for the cold eddy was constructed with Argo data. Results show that the eddy structure follows that of an ellipsoid, where the largest anomaly occurs near the center at almost 400 m depth. The horizontal diameter was 200 km, and the vertical diameter was 500 m. The 2-D sound speed profile feature model for the cold eddy based on the Argo profiles was established with the EOF method. With the feature model, acoustic propagation through both a stationary eddy and a moving eddy was investigated. Results suggest that the presence of the cold eddy could push the convergence zone up to 4 km closer to the source, where it acts as a convex mirror to focus the energy. The movement of the eddy would affect the transmission loss of the first group ray arrivals by about 1 dB, the time delay by about 0.01 s, and the receiver angle by about 0.8° when the source and the receiver were at 300 m depth and the receiver was located 300 km away from the source.

Keywords

Cold eddy Argo profiles Altimetry data Acoustic propagation 

Notes

Acknowledgements

The sea surface height data were made available on the AVISO web (ftp://ftp.aviso.altimetry.fr/). The Argo URL (http://argo.jcommops.org) data were made available by the China Argo real-time data center on the Web.

References

  1. 1.
    Levenson, C., Doblar, R.A.: Long range acoustic propagation through the Gulf Stream. J. Acoust. Soc. Am. 59(5), 1134–1141 (1976)CrossRefGoogle Scholar
  2. 2.
    Spindel, R.C., Spiesberger, J.L.: Multipath variability due to the Gulf Stream. J. Acoust. Soc. Am. 69(4), 982–988 (1981)CrossRefGoogle Scholar
  3. 3.
    Mellberg, L.E., Robinson, A.R., Botseas, G.: Modeled time variability of acoustic propagation through a Gulf Stream meander and eddies. J. Acoust. Soc. Am. 87(3), 1044–1054 (1990)CrossRefGoogle Scholar
  4. 4.
    Abbot, P., Celuzza, S., Dyer, I., et al.: Effects of East China sea shallow-water environment on acoustic propagation. IEEE J. Ocean. Eng. 28(2), 192–211 (2003)CrossRefGoogle Scholar
  5. 5.
    Luo, J., Badiey, M., Lin, Y.: Horizontal focusing/defocusing due to shallow water internal waves. J. Acoust. Soc. Am. 127(3), 1786 (2010). (SWARM) CrossRefGoogle Scholar
  6. 6.
    Apel, J.R., Badiey, M., Chiu, C.S., et al.: An overview of the 1995 SWARM shallow-water internal wave acoustic scattering experiment. IEEE J. Ocean. Eng. 22(3), 465–500 (1997)CrossRefGoogle Scholar
  7. 7.
    Worcester, P.F., Dzieciuch, M.A., Mercer, J.A., et al.: The North Pacific acoustic laboratory deep-water acoustic propagation experiments in the Philippine sea. J. Acoust. Soc. Am. 134(4), 3359–3375 (2012)CrossRefGoogle Scholar
  8. 8.
    Chen, C., Lei, B., Ma, Y.L., et al.: Investigating sound speed profile assimilation: an experiment in the Philippine Sea[J]. Ocean Eng. 124, 135–140 (2016)CrossRefGoogle Scholar
  9. 9.
    Chen, C., Yang, K., Duan, R., Ma, Y.: Acoustic propagation analysis with a sound speed feature model in the front area of Kuroshio extension. Appl. Ocean Res. 68, 1–10 (2017).  https://doi.org/10.1016/j.apor.2017.08.001 CrossRefGoogle Scholar
  10. 10.
    Chen, C., Yang, K.D., Ma, Y.L., et al.: Comparison of surface duct energy leakage with bottom-bounce energy of close range propagation[J]. Chin. Phys. Lett. 33(10), 104302 (2016)CrossRefGoogle Scholar
  11. 11.
    Gordon, A.L.: Interocean exchange of thermocline water. J. Geophys. Res. 91(91), 5037–5046 (1986).  https://doi.org/10.1029/JC091iC04p05037 CrossRefGoogle Scholar
  12. 12.
    CATOC Consortium: Ocean climate change: comparison of acoustic tomography, satellite altimetry, and modeling. Science 281(5381), 1327–1332 (1998)CrossRefGoogle Scholar
  13. 13.
    Suga, T., Takei, Y., Hanawa, K.: Thermostad distribution in the North Pacific subtropical gyre: the central mode water and the subtropical mode water. J. Phys. Oceanogr. 27, 140–152 (1997).  https://doi.org/10.1175/1520-0485(1997)027%3c0140:TDITNP%3e2.0.CO;2 CrossRefGoogle Scholar
  14. 14.
    Bingham, F.M., Suga, T.: Distributions of mixed layer properties in North Pacific water mass formation areas: comparison of Argo floats and World Ocean Atlas 2001. Ocean Sci. 3(1), 61–70 (2006).  https://doi.org/10.5194/os-2-61-2006 CrossRefGoogle Scholar
  15. 15.
    Ohno, Y., Iwasaka, N., Kobashi, F., et al.: Mixed layer depth climatology of the North Pacific based on Argo observations. J. Oceanogr. 65(1), 1–16 (2009)CrossRefGoogle Scholar
  16. 16.
    Li, J., Yang, K.D., Lei, B., et al.: Research on the temporal-spatial distributions and the physical mechanisms for the sound speed profiles in north-central Indian Ocean. Acta Phys. Sin. 61(8), 282–299 (2012). (in Chinese) Google Scholar
  17. 17.
    Jayne, S.R., Hogg, N.G., Waterman, S.N., et al.: The Kuroshio extension and its recirculation gyres, Deep Sea Res. Part I Oceanogr. Res. Pap. 56(12), 2088–2099 (2009)CrossRefGoogle Scholar
  18. 18.
    Taguchi, B., Qiu, B., Nonaka, M., et al.: Decadal variability of the Kuroshio extension: mesoscale eddies and recirculations. Ocean Dyn. 60(3), 673–691 (2010)CrossRefGoogle Scholar
  19. 19.
    Qiu, B., Chen, S.: Eddy-induced heat transport in the subtropical North Pacific from Argo, TMI, and altimetry measurements[J]. J. Phys. Oceanogr. 35(4), 458–473 (2005)CrossRefGoogle Scholar
  20. 20.
    Wang, G., Su, J., Chu, P.C.: Mesoscale eddies in the South China Sea observed with altimeter data[J]. Geophys. Res. Lett. 30(21), OCE 6-1 (2003)Google Scholar
  21. 21.
    Chelton, D.B., Schlax, M.G., Samelson, R.M., et al.: Global observations of large oceanic eddies[J]. Geophys. Res. Lett. 34(15), 87–101 (2007)CrossRefGoogle Scholar
  22. 22.
    Chaigneau, A., Gizolme, A., Grados, C.: Mesoscale eddies off Peru in altimeter records: identification algorithms and eddy spatio-temporal patterns[J]. Prog. Oceanogr. 79(s 2–4), 106–119 (2008)CrossRefGoogle Scholar
  23. 23.
    Chaigneau, A., Texier, M.L., Eldin, G., et al.: Vertical structure of mesoscale eddies in the eastern South Pacific Ocean: a composite analysis from altimetry and Argo profiling floats[J]. J. Geophys. Res. Atmos. 116(C11), 476–487 (2011)CrossRefGoogle Scholar
  24. 24.
    Zhang, Z., Zhang, Y., Wang, W., et al.: Universal structure of mesoscale eddies in the ocean[J]. Geophys. Res. Lett. 40(14), 3677–3681 (2013)CrossRefGoogle Scholar
  25. 25.
    Lovett, J.R.: Merged seawater sound-speed equations[J]. J. Acoust. Soc. Am. 63(63), 1713–1718 (1978)CrossRefGoogle Scholar
  26. 26.
    Du, B.L., Song, X.J.: A method applying empirical orthogonal function analysis to predict the sea surface temperature[J]. Acta Oceanol. Sin. 3(1), 14–27 (1981)Google Scholar
  27. 27.
    Porter, M.B., Bucker, H.P.: Gaussian beam tracing for computing ocean acoustic fields[J]. J. Acoust. Soc. Am. 82(4), 1349–1359 (1987)CrossRefGoogle Scholar

Copyright information

© Australian Acoustical Society 2019

Authors and Affiliations

  • Cheng Chen
    • 1
  • Ya Gao
    • 2
  • Fenggang Yan
    • 1
    Email author
  • Tao Jin
    • 1
  • Zhiquan Zhou
    • 1
  1. 1.School of Information Science and EngineeringHarbin Institute of TechnologyWeihaiChina
  2. 2.Xi’an Keyway Technology Co., LtdXi’anChina

Personalised recommendations