Advertisement

Acoustics Australia

, Volume 47, Issue 1, pp 33–49 | Cite as

The Analysis of Acoustic Propagation Characteristic Affected by Mesoscale Cold-Core Vortex Based on the UMPE Model

  • Xi Chen
  • Mei HongEmail author
  • Weijun Zhu
  • Kefeng Mao
  • Jing Jing Ge
  • Senliang Bao
Original Paper
  • 87 Downloads

Abstract

The ocean mesoscale vortex can make uneven distribution of sound energy, which has a significant impact on underwater acoustic equipment, weapons and submarine warfare. Based on the observed data of 2014 West Pacific sea oceanographic survey, the influence of the properties, strength, position and depth of the mesoscale vortex on the acoustic propagation characteristics is simulated by the parabolic equation. Our observed vortex is a typical cyclone-type cold vortex in the Kuroshio extension body, and the cold water turns on intensely at the center of vortex. The effect depth of vortex is 500 m, and then, the parabolic equation of acoustic model is used to analyze and simulate the impact of mesoscale cold-core vortex on acoustic transmission loss. Results show that the horizontal perturbation of the surface velocity caused by mesoscale vortex has a great influence on the spatial distribution of water sound field. The cold vortex makes the position of the convergence zone move forward, with the width reduced, and the gain efficiency enhanced. When sound propagates outside of the cold-core vortex, compared with inside of the cold-core vortex, the assembled areas are backward, with the width increased, and gain effect weakened. The non-uniform hydrological environment caused by the ocean mesoscale vortex is a key modulating factor of the abnormal variation of acoustic energy in spatial distribution.

Keywords

Mesoscale cold-core vortex UMPE model Sound field Assembled area 

Notes

Acknowledgements

This study is supported by the Chinese National Natural Science Fund (No. 41875061; No. 41775165), the Chinese National Natural Science Fund (BK20161464) of Jiangsu Province and the Research Program of National Defense University of Science and Technology (ZK18-03-48).

Compliance with Ethical Standards

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

References

  1. Arevalo-Martinez, D., Kock, A., Löscher, C.R., Schmitz, R.A., Stramma, L.: The influence of mesoscale eddies on nitrous oxide distribution in the eastern tropical South Pacific. Biogeosci. Discuss. 12(12), 9243–9273 (2015)CrossRefGoogle Scholar
  2. Arslan, H., Chen, Z.N., Benedetto, M.D.: Ultra Wideband Wireless Communication, pp. 189–193. Wiley, New York (2006)CrossRefGoogle Scholar
  3. Baer, R.N.: Calculations of sound propagation through an eddy. JASA 67, 1180–1185 (1980)CrossRefGoogle Scholar
  4. Beron-Vera, F.J., Brown, M.G.: Ray stability in weakly range-dependent sound channels. Acoust. Soc. Am. 114(1), 123–130 (2003)CrossRefGoogle Scholar
  5. Carton, J.A., Giese, B.: A reanalysis of ocean climate using simple ocean data assimilation (SODA). Mon. Weath. Rev. 136, 2999–3017 (2008)CrossRefGoogle Scholar
  6. Carton, J.A., Chepurin, G., Cao, X., Giese, B.: A Simple ocean data assimilation analysis of the global upper ocean 1950–95. Part I: Methodology. J. Phys. Oceanogr. 30, 294–309 (2000)CrossRefGoogle Scholar
  7. Chen, F.J., Millero, : Speed of sound in seawater at high pressures. Acoust. Soc. Am. 62(5), 1129–1134 (1977)CrossRefGoogle Scholar
  8. Itoh, S., Yasuda, I., Ueno, H., Suga, T., Kakehi, S.: Regeneration of a warm anticyclonic ring by cold water masses within the western subarctic gyre of the North Pacific. J. Oceanogr. 70(3), 211–223 (2014)CrossRefGoogle Scholar
  9. Jian, Y.J., Zhang, J., Liu, Q.S., WangY, F.: Effect of Mesoscale eddies on underwater sound propagation. Appl. Acoust. 70(3), 432–440 (2009)CrossRefGoogle Scholar
  10. Lawrence, M.W.: Modeling of acoustic propagation across warm-core eddies. J. Acoust. Soc. Am. 73(2), 474–485 (1983)CrossRefGoogle Scholar
  11. Li, J.X., Zhang, R., Chen, Y.D., et al.: Ocean mesoscale eddy modeling and its application in studying the effect on underwater acoustic propagation. Marine Sci. Bull. 30(1), 37–46 (2011)Google Scholar
  12. Li, J.X., Zhang, R., Wang, Y.L., et al.: Karken marine acoustic model and its numerical experiment for acoustic propagation and decay. Adv. Marine Sci. 27(1), 51–58 (2009)Google Scholar
  13. Liu, Q.Y.: Study of Sound Propagation Under Ocean Mesoscale Phenomena. Harbin Engineering University, Harbin (2006)Google Scholar
  14. Mellberg, L.E., Johannessen, O.M., Connors, D.N., et al.: Modeled acoustic propagation through an ice edge eddy in the East Greenland Sea Marginal Ice Zone. J. Geophys. Res.: Oceans (1978–2012) 92(C7), 6857–6868 (1987)CrossRefGoogle Scholar
  15. Pelug, H.W.: UWB pulse shaping for IEEE 802.15a. In: Proceedings of the 38th European Microwave Conference, London, UK, pp. 713–716 (2008)Google Scholar
  16. Sevgi, L.: Parabolic Equation Method, pp. 515–594. Wiley, New York (2014)Google Scholar
  17. Siderius, M., Porter, M.B., Hurskt, P., et al.: Effects of ocean thermocline variability on noncoherent underwater acoustic communications. J. Acoust. Soc. Am. 12(4), 1895–1908 (2007)CrossRefGoogle Scholar
  18. Smith, K.B., Tappert, F.D.: UMPE: The University of Miami Parabolic Equation Model, Version 1.0. Marine Physical Laboratory Technical Memo 432 (1993)Google Scholar
  19. Sun, L., Gao, F., Pan, C.M., et al.: Analysis and simulation of influence of deep-sea thermocline on underwater acoustic propagation based on Argo data. Acoust. Technol. 33(2), 113–118 (2014)Google Scholar
  20. Wang, Y.L., Gao, J.H., Li, J., et al.: Zoning and propagation loss characteristics of underwater acoustic environment in the Northwest Pacific Ocean. Marine Sci. Bull. 32(1), 85–91 (2013)MathSciNetGoogle Scholar
  21. Yoshikawa, C., Abe, H., Aita, M.N., Breider, F., Kuzunuki, K., et al.: Insight into nitrous oxide production processes in the western North Pacific based on a marine ecosystem isotopomer model. J. Oceanogr. 72(3), 1–18 (2015)Google Scholar
  22. Zhang, X., Liu, Y., Sun, J.: Analyze of abnormal sound field distribution in an environment of typical Kuroshio front in the East China Sea. J. Appl. Oceanogr. 32(3), 324–331 (2013)Google Scholar

Copyright information

© Australian Acoustical Society 2019

Authors and Affiliations

  • Xi Chen
    • 1
  • Mei Hong
    • 1
    • 2
    Email author
  • Weijun Zhu
    • 2
  • Kefeng Mao
    • 1
  • Jing Jing Ge
    • 3
  • Senliang Bao
    • 1
  1. 1.Research Centre of Ocean Environment Numerical Simulation, Institute of Meteorology and oceanographyNational University of Defense TechnologyNanjingChina
  2. 2.Collaborative Innovation Centre on Forecast and Evaluation of Meteorological DisasterNanjing University of Information Science &TechnologyNanjingChina
  3. 3.31110 TroopNanjingChina

Personalised recommendations