Advertisement

Effects of Different Lung Volume Conditions on Closed Quotient, Vocal Fundamental Frequency and Relative Intensity in Vocally Untrained Female Speakers

  • Sylvia Yeo
  • Rachel Lee
  • Patricia McCabe
  • Catherine Madill
Original Paper

Abstract

The objective of this study was to determine the relationship between lung volume (LV) conditions and vocal fold vibratory patterns using measurements of closed quotient (CQ), fundamental frequency (F0) and relative vocal intensity. Forty-three healthy and vocally untrained females were asked to produce the vowel /a/ following breathing instructions that cued for higher, habitual, or lower LV conditions. Closed quotient was measured by electroglottography (EGG) and analyzed using criterion-level method of 25%. An average of CQ, F0 and relative vocal intensity were obtained. No significant difference was observed in CQ between cued LV conditions; however, there was a trend for CQ to increase in the cued high LV condition. Relative vocal intensity and F0 differed significantly across all conditions with higher F0 and relative vocal intensity observed at the high LV condition. These findings suggested that the use of different cued LVs did not have a significant impact on CQ. This may have been due to (1) the phonatory task, (2) variability in responses to the breathing instructions between individuals, and (3) the measurement of CQ. However, F0 and relative vocal intensity were significantly influenced by the LV. This offers a possible alternative approach in cueing pitch and loudness in singing and voice therapy.

Keywords

Lung volume Closed quotient Fundamental frequency Vocal intensity Electroglottography Vocal fold vibration 

Notes

Acknowledgements

This study was supported by the 2013 Education Grant from the Australian Acoustical Society. We would also like to acknowledge the support of the Dr Liang Voice Program at the University of Sydney.

References

  1. 1.
    Titze, I.R.: The physics of small-amplitude oscillation of the vocal folds. J. Acoust. Soc. Am. 83(4), 1536–1552 (1988)CrossRefGoogle Scholar
  2. 2.
    Wanger, J., Clausen, J.L., Coates, A., Pedersen, O.F., Brusasco, V., Burgos, F., Casaburi, R., Crapo, R., Enright, P., van der Grinten, C.P., Gustafsson, P., Hankinson, J., Jensen, R., Johnson, D., Macintyre, N., McKay, R., Miller, M.R., Navajas, D., Pellegrino, R., Viegi, G.: Standardisation of the measurement of lung volumes. Eur. Respir. J. 26(3), 511–522 (2005).  https://doi.org/10.1183/09031936.05.00035005 CrossRefGoogle Scholar
  3. 3.
    Iwarsson, J., Thomasson, M., Sundberg, J.: Effects of lung volume on the glottal voice source. J. Voice 12(4), 424–433 (1998)CrossRefGoogle Scholar
  4. 4.
    Watson, P.J., Ciccia, A.H., Weismer, G.: The relation of lung volume initiation to selected acoustic properties of speech. J. Acoust. Soc. Am. 113(5), 2812–2819 (2003)CrossRefGoogle Scholar
  5. 5.
    Iwarsson, J., Sundberg, J.: Effects of lung volume on vertical larynx position during phonation. J. Voice 12(2), 159–165 (1998)CrossRefGoogle Scholar
  6. 6.
    Dromey, C., Ramig, L.O.: The effect of lung volume on selected phonatory and articulatory variables. J. Speech Lang. Hear. Res. 41(3), 491–502 (1998)CrossRefGoogle Scholar
  7. 7.
    Collyer, S., Kenny, D.T., Archer, M.: The effect of abdominal kinematic directives on respiratory behaviour in female classical singing. Logop. Phon. Vocol. 34(3), 100–110 (2009).  https://doi.org/10.1080/14015430903008780 CrossRefGoogle Scholar
  8. 8.
    Leanderson, R., Sundberg, J.: Breathing for singing. J. Voice 2(1), 2–12 (1988).  https://doi.org/10.1016/S0892-1997(88)80051-1 CrossRefGoogle Scholar
  9. 9.
    Kiesgen, P.: Voice pedagogy: breathing. J. Sing. 62(2), 169–171 (2005)Google Scholar
  10. 10.
    Carding, P.N., Horsley, I.A.: An evaluation study of voice therapy in non-organic dysphonia. Eur. J. Disord. Commun. J. Coll. Speech Lang. Ther. Lond. 27(2), 137–158 (1992)CrossRefGoogle Scholar
  11. 11.
    Ruddy, B.H., Davenport, P., Baylor, J., Lehman, J., Baker, S., Sapienza, C.: Inspiratory muscle strength training with behavioral therapy in a case of a rower with presumed exercise-induced paradoxical vocal-fold dysfunction. Int. J. Pediatr. Otorhinolaryngol. 68(10), 1327–1332 (2004).  https://doi.org/10.1016/j.ijporl.2004.04.002 CrossRefGoogle Scholar
  12. 12.
    Solomon, N.P., Makashay, M.J., Kessler, L.S., Sullivan, K.W.: Speech-Breathing treatment and LSVT for a patient with hypokinetic-spastic dysarthria After TBI. J. Med. Speech-Lang. Pathol. 12(4), 213–219 (2004)Google Scholar
  13. 13.
    Xu, J.H., Ikeda, Y., Komiyama, S.: Bio-feedback and the yawning breath pattern in voice therapy: a clinical trial. Auris Nasus Larynx 18(1), 67–77 (1991)CrossRefGoogle Scholar
  14. 14.
    Sapienza, C.M.: Respiratory muscle strength training applications. Curr. Opin. Otolaryngol. Head Neck Surg. 16(3), 216–220 (2008).  https://doi.org/10.1097/MOO.0b013e3282fe96bd CrossRefGoogle Scholar
  15. 15.
    Titze, I.R.: A framework for the study of vocal registers. J. Voice 2(3), 183–194 (1988).  https://doi.org/10.1016/S0892-1997(88)80075-4 CrossRefGoogle Scholar
  16. 16.
    Steinhauer, K., Grayhack, J.P., Smiley-Oyen, A.L., Shaiman, S., McNeil, M.R.: The relationship among voice onset, voice quality, and fundamental frequency: a dynamical perspective. J. Voice 18(4), 432–442 (2004).  https://doi.org/10.1016/j.jvoice.2004.01.006 CrossRefGoogle Scholar
  17. 17.
    Chernobelsky, S.: The use of electroglottography in the treatment of deaf adolescents with puberphonia. Logoped. Phon. Vocol. 27(2), 63–65 (2002).  https://doi.org/10.1080/140154302760409275 CrossRefGoogle Scholar
  18. 18.
    Lim, J.Y., Lim, S.E., Choi, S.H., Kim, J.H., Kim, K.M., Choi, H.S.: Clinical characteristics and voice analysis of patients with mutational dysphonia: clinical significance of diplophonia and closed quotients. J. Voice 21(1), 12–19 (2007).  https://doi.org/10.1016/j.jvoice.2005.10.002 CrossRefGoogle Scholar
  19. 19.
    Björkner, E., Sundberg, J., Cleveland, T., Stone, E., Skolan för datavetenskap och, k., Tal, m.o.h.T.M.H., Kth: Voice source differences between registers in female musical theater singers. J. Voice 20(2), 187–197 (2006).  https://doi.org/10.1016/j.jvoice.2005.01.008 CrossRefGoogle Scholar
  20. 20.
    Roubeau, B., Chevrie-Muller, C., Arabia-Guidet, C.: Electroglottographic study of the changes of voice registers. Folia Phon. 39(6), 280–289 (1987)CrossRefGoogle Scholar
  21. 21.
    Blomgren, M., Chen, Y., Ng, M.L., Gilbert, H.R.: Acoustic, aerodynamic, physiologic, and perceptual properties of modal and vocal fry registers. J. Acoust. Soc. Am. 103(5 Pt 1), 2649–2658 (1998)CrossRefGoogle Scholar
  22. 22.
    La, F.M., Sundberg, J.: Contact quotient versus closed quotient: a comparative study on professional male singers. J. Voice 29(2), 148–154 (2015).  https://doi.org/10.1016/j.jvoice.2014.07.005 CrossRefGoogle Scholar
  23. 23.
    Herbst, C., Ternström, S.: A comparison of different methods to measure the EGG contact quotient. Logop. Phoniatr. Vocol. 31(3), 126–138 (2006).  https://doi.org/10.1080/14015430500376580 CrossRefGoogle Scholar
  24. 24.
    Kania, R.E., Hans, S., Hartl, D.M., Clement, P.: Variability of electroglottographic glottal closed quotients. Arch. Otolaryngol. Head Neck Surg. 130(3), 349 (2004)CrossRefGoogle Scholar
  25. 25.
    Verdolini, K., Druker, D.G., Palmer, P.M., Samawi, H.: Laryngeal adduction in resonant voice. J. Voice 12(3), 315–327 (1998).  https://doi.org/10.1016/S0892-1997(98)80021-0 CrossRefGoogle Scholar
  26. 26.
    Kankare, E., Laukkanen, A.-M., Ilomäki, I., Miettinen, A., Pylkkänen, T.: Electroglottographic contact quotient in different phonation types using different amplitude threshold levels. Logop. Phon. Vocol. 37(3), 127–132 (2012).  https://doi.org/10.3109/14015439.2012.664656 CrossRefGoogle Scholar
  27. 27.
    Henrich, N., Alessandro, C., Doval, B., Castellengo, M.: On the use of the derivative of electroglottographic signals for characterization of nonpathological phonation. J. Acoust. Soc. Am. 115(3), 1321–1332 (2004).  https://doi.org/10.1121/1.1646401 CrossRefGoogle Scholar
  28. 28.
    Paul, N., Kumar, S., Chatterjee, I., Mukherjee, B.: Electroglottographic parameterization of the effects of gender, vowel and phonatory registers on vocal fold vibratory patterns: an Indian perspective. Indian J. Otolaryngol. Head Neck Surg. 63(1), 27–31 (2011).  https://doi.org/10.1007/s12070-010-0099-0 CrossRefGoogle Scholar
  29. 29.
    Henrich, N., d’Alessandro, C., Doval, B., Castellengo, M.: Glottal open quotient in singing: Measurements and correlation with laryngeal mechanisms, vocal intensity, and fundamental frequency. J. Acoust. Soc. Am. 117(3), 1417–1430 (2005).  https://doi.org/10.1121/1.1850031 CrossRefGoogle Scholar
  30. 30.
    Stathopoulos, E.T., Sapienza, C.: Respiratory and laryngeal function of women and men during vocal intensity variation. J. Speech Hear. Res. 36(1), 64–75 (1993)CrossRefGoogle Scholar
  31. 31.
    Kitzing, P., Sonesson, B.: A photoglottographical study of the female vocal folds during phonation. Folia Phoniatrica 26(2), 138–149 (1974)CrossRefGoogle Scholar
  32. 32.
    Sundberg, J.E., Leanderson, R., von Euler, C.: Activity relationship between diaphragm and cricothyroid muscles. J. Voice 3(3), 225–232 (1989).  https://doi.org/10.1016/S0892-1997(89)80004-9 CrossRefGoogle Scholar
  33. 33.
    Deary, I.J., Wilson, J.A., Carding, P.N., MacKenzie, K.: VoiSS: a patient-derived voice symptom scale. J. Psychosom. Res. 54(5), 483–489 (2003).  https://doi.org/10.1016/S0022-3999(02)00469-5 CrossRefGoogle Scholar
  34. 34.
    Fairbanks, G.: Voice and Articulation Drillbook, 2nd edn. Harper & Row, New York (1960)Google Scholar
  35. 35.
    Hirano, M.: Clinical Examination of Voice. Book, Whole, vol. 5. Springer-Verlag, Wien (1981)Google Scholar
  36. 36.
  37. 37.
    Ambulatory Monitoring Inc. http://www.ambulatory-monitoring.com/inductotrace.html (2018). Accessed June 2018
  38. 38.
    Glottal Enterprises: Electroglottographs. http://www.glottal.com/Electroglottographs.html (2018). Accessed June 2018
  39. 39.
    ADInstruments: PowerLab. https://www.adinstruments.com/products/powerlab (2018). Accessed June 2018
  40. 40.
    ADInstruments: LabChart. https://www.adinstruments.com/products/labchart. Accessed June 2018
  41. 41.
    Iwarsson, J., Thomasson, M., Sundberg, J.: Lung volume and phonation: a methodological study. Logoped. Phon. Vocol. 21(1), 13–20 (1996).  https://doi.org/10.3109/14015439609099198 CrossRefGoogle Scholar
  42. 42.
    Glottal Enterprises: PhaseComp Software. http://www.glottal.com/PhaseComp.html (2018). Accessed June 2018
  43. 43.
    Boersma, P., Weenink, D.: Praat: doing phonetics by computer. http://www.fon.hum.uva.nl/praat/. January, 2018
  44. 44.
    Shrout, P.E., Fleiss, J.L.: Intraclass correlations: uses in assessing rater reliability. Psychol. Bull. 86(2), 420–428 (1979)CrossRefGoogle Scholar
  45. 45.
    Koo, T.K., Li, M.Y.: A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 15(2), 155–163 (2016).  https://doi.org/10.1016/j.jcm.2016.02.012 CrossRefGoogle Scholar
  46. 46.
    Chasaide, A.N., Gobl, C.: Contextual variation of the vowel voice source as a function of adjacent consonants. Lang. Speech 36(Pt 2–3), 303–330 (1993).  https://doi.org/10.1177/002383099303600310 CrossRefGoogle Scholar
  47. 47.
    Löfqvist, A., Baer, T., McGarr, N.S., Story, R.S.: The cricothyroid muscle in voicing control. J. Acoust. Soc. Am. 85(3), 1314–1321 (1989)CrossRefGoogle Scholar
  48. 48.
    Hoole, P., Bombien, L.: Laryngeal–oral coordination in mixed-voicing clusters. J. Phon. 44, 8–24 (2014).  https://doi.org/10.1016/j.wocn.2014.02.004 CrossRefGoogle Scholar
  49. 49.
    Hanson, H.M., Stevens, K.N.: A quasiarticulatory approach to controlling acoustic source parameters in a Klatt-type formant synthesizer using HLsyn. J. Acoust. Soc. Am. 112(3 Pt 1), 1158–1182 (2002).  https://doi.org/10.1121/1.1498851 CrossRefGoogle Scholar
  50. 50.
    Löfqvist, A.: Acoustic and aerodynamic effects of interarticulator timing in voiceless consonants. Lang. Speech 35(1–2), 15 (1992)CrossRefGoogle Scholar
  51. 51.
    Cho, T., Ladefoged, P.: Variation and universals in VOT: evidence from 18 languages. J. Phon. 27(2), 207–229 (1999).  https://doi.org/10.1006/jpho.1999.0094 CrossRefGoogle Scholar
  52. 52.
    Hutters, B.: Vocal fold adjustments in Danish voiceless obstruent production. Ann. Rep. Inst. Phon. Univ. Cph. 18, 293–385 (1984)Google Scholar
  53. 53.
    Orlikoff, R.F., Deliyski, D.D., Baken, R.J., Watson, B.C.: Validation of a glottographic measure of vocal attack. J. Voice 23(2), 164–168 (2009).  https://doi.org/10.1016/j.jvoice.2007.08.004 CrossRefGoogle Scholar
  54. 54.
    Mathieson, L.: Greene and Mathieson’s the Voice and its Disorders. Book, Whole, vol. 6th. Wiley, Hoboken (2013)Google Scholar
  55. 55.
    Kochis-Jennings, K.A., Finnegan, E.M., Hoffman, H.T., Jaiswal, S.: Laryngeal muscle activity and vocal fold adduction during chest, chestmix, headmix, and head registers in females. J. Voice 26(2), 182–193 (2012).  https://doi.org/10.1016/j.jvoice.2010.11.002 CrossRefGoogle Scholar
  56. 56.
    Hirano, M., Ohala, J., Vennard, W.: The function of laryngeal muscles in regulating fundamental frequency and intensity of phonation. J. Speech Lang. Hear. Res. 12(3), 616–628 (1969)CrossRefGoogle Scholar
  57. 57.
    Sulter, A.M., Albers, F.W.: The effects of frequency and intensity level on glottal closure in normal subjects. Clin. Otolaryngol. Allied Sci. 21(4), 324–327 (1996)CrossRefGoogle Scholar
  58. 58.
    Zhang, Z.: Mechanics of human voice production and control. J. Acoust. Soc. Am. 140(4), 2614 (2016).  https://doi.org/10.1121/1.4964509 CrossRefGoogle Scholar
  59. 59.
    Sundberg, J.: Vocal fold vibration patterns and phonatory modes. Q. Prog. Status Rep. 35(2–3), 69–80 (1994)Google Scholar
  60. 60.
    Roark, R.M., Watson, B.C., Baken, R.J., Brown, D.J., Thomas, J.M.: Measures of vocal attack time for healthy young adults. J. Voice 26(1), 12–17 (2012).  https://doi.org/10.1016/j.jvoice.2010.09.009 CrossRefGoogle Scholar
  61. 61.
    Han, J.N., Stegen, K., Cauberghs, M., Van de Woestijne, K.P.: Influence of awareness of the recording of breathing on respiratory pattern in healthy humans. Eur. Respir. J. 10(1), 161–166 (1997).  https://doi.org/10.1183/09031936.97.10010161 CrossRefGoogle Scholar
  62. 62.
    Mitchell, H.L., Hoit, J.D., Watson, P.J.: Cognitive-linguistic demands and speech breathing. J. Speech Hear. Res. 39(1), 93–104 (1996)CrossRefGoogle Scholar
  63. 63.
    Plant, R.L.: The interrelationship of subglottic air pressure, fundamental frequency, and vocal intensity during speech. J. Voice Off. J. Voice Found. 14(2), 170–177 (2000).  https://doi.org/10.1016/S0892-1997(00)80024-7 CrossRefGoogle Scholar
  64. 64.
    Rothenberg, M., Mahshie, J.J.: Monitoring vocal fold abduction through vocal fold contact area. J. Speech Lang. Hear. Res. 31(3), 338–351 (1988)CrossRefGoogle Scholar
  65. 65.
    Milstein, C.F.: Laryngeal function associated with changes in lung volume during voice and speech production in normal speaking women. Ph.D., The University of Arizona (1999)Google Scholar
  66. 66.
    Iwarsson, J.: Effects of inhalatory abdominal wall movement on vertical laryngeal position during phonation. J. Voice 15(3), 384–394 (2001).  https://doi.org/10.1016/S0892-1997(01)00040-6 CrossRefGoogle Scholar
  67. 67.
    Sundberg, J.E.: Vocal fold vibration patterns and modes of phonation. Folia Phomiatrica et Logopaedica 47(4), 218–228 (1995)CrossRefGoogle Scholar
  68. 68.
    Titze, I.R.: On the relation between subglottal pressure and fundamental frequency in phonation. J. Acoust. Soc. Am. 85(2), 901–906 (1989)CrossRefGoogle Scholar
  69. 69.
    Zhang, Z.: Regulation of glottal closure and airflow in a three-dimensional phonation model: implications for vocal intensity control. J. Acoust. Soc. Am. 137(2), 898–910 (2015).  https://doi.org/10.1121/1.4906272 CrossRefGoogle Scholar
  70. 70.
    Stathopoulos, E.T.: Relationship between intraoral air pressure and vocal intensity in children and adults. J. Speech Hear. Res. 29(1), 71–74 (1986)CrossRefGoogle Scholar
  71. 71.
    Rossing, T.D.: Springer Handbook of Acoustics. Book, Whole. Springer, New York (2007)CrossRefGoogle Scholar
  72. 72.
    Brogan, F.A., Tonndorf, J., Washburn, D.D.: Auditory difference limen of intensity in normal hearing subjects. A. M. A. Arch. Otolaryngol. 62(3), 292–305 (1955).  https://doi.org/10.1001/archotol.1955.03830030058011 CrossRefGoogle Scholar
  73. 73.
    Hirano, M., Vennard, W., Ohala, J.: Regulation of register, pitch and intensity of voice. An electromyographic investigation of intrinsic laryngeal muscles. Folia Phon. 22(1), 1–20 (1970)CrossRefGoogle Scholar
  74. 74.
    Rochet-Capellan, A., Fuchs, S.: Changes in breathing while listening to read speech: the effect of reader and speech mode. Front. Psychol. 4, 906 (2013).  https://doi.org/10.3389/fpsyg.2013.00906 CrossRefGoogle Scholar
  75. 75.
    Gallego, J., Perruchet, P.: Effect of practice on the voluntary control of a learned breathing pattern. Physiol. Behav. 49(2), 315–319 (1991).  https://doi.org/10.1016/0031-9384(91)90049-T CrossRefGoogle Scholar
  76. 76.
    Hixon, T.J., Hoit, J.D.: Evaluation and Management of Speech Breathing Disorders: Principles and Methods, Book, Whole, vol. 1st. Redington Brown, Tucson (2005)Google Scholar

Copyright information

© Australian Acoustical Society 2018

Authors and Affiliations

  1. 1.Voice Research Laboratory (Speech Pathology)The University of SydneyLidcombeAustralia

Personalised recommendations