Underwater Sound Source Localization by EMD-Based Maximum Likelihood Method
- 30 Downloads
Abstract
The underwater object localization is important in defense, underwater biological and environmental applications. Localization using a passive sonar system is a challenging task. It is more challenging when the source and receivers are in the reverberant environment. Time delay estimation (TDE)-based localization is a well-known technique to localize source for last few decades. In this work, empirical mode decomposition maximum likelihood (EMD ML TDE) method is used to estimate the time delay in a reverberant environment. The sound source location is estimated by intersecting spherical surfaces from the time delay. The experimental results prove that EMD ML time delay estimation method is effective to localize a sound source in a reverberant environment.
Keywords
Empirical mode decomposition EMD ML TDE Generalized cross-correlation Localization TDE Reverberant environment SNRReferences
- 1.Zhang, C., et al.: Maximum likelihood sound source localization and beamforming for directional microphone arrays in distributed meetings. IEEE Trans. Multimed. 10, 538–548 (2008)CrossRefGoogle Scholar
- 2.Valin, J.M., Michaud, F., Hadjou, B., Rouat, J.: Localization of simultaneous moving sound sources for mobile robot using a frequency-domain steered beamformer approach. IEEE Int. Conf. Robot. Autom. Proc. 1, 1033–1038 (2004)Google Scholar
- 3.DiBiase, J.H., Silverman, H.F., Brandstein, M.S.: Robust localization in reverberant rooms. Microphone Arrays, pp. 157–180. Springer, Berlin (2001)CrossRefGoogle Scholar
- 4.Argentieri, S., Danes, P.: Broadband variations of the MUSIC high-resolution method for sound source localization in robotics. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. (2007)Google Scholar
- 5.Asano, F., Goto, M., Itou, K., Asoh, H.: Real-time sound source localization and separation system and its application to automatic speech recognition. Seventh European Conference on Speech Communication and Technology. (2001)Google Scholar
- 6.Duan, R., Yang, K., Ma, Y.: Narrowband source localisation in the deep Ocean using a near-surface array. Acoustics Australia 42(1), 36–42 (2014)Google Scholar
- 7.Yang, K., Lu, Y., Lei, Z., Xia, H.: Passive localization based on multipath time-delay difference with two hydrophones in deep Ocean. Acoustics Australia 45(1), 51–60 (2017)CrossRefGoogle Scholar
- 8.Schau, H.C., Robinson, A.Z.: Passive source localization employing intersecting spherical surfaces from time-of-arrival differences. IEEE Trans. Acoust. Speech Signal Process. 35(8), 1223–1225 (1987)CrossRefGoogle Scholar
- 9.Wang, H., Chu, P.: Voice source localization for automatic camera pointing system in videoconferencing. IEEE Int. Conf. Acoustics Speech Signal Process. 1, 187–190 (1997)Google Scholar
- 10.Omologo, M., Svaizer, P.: Acoustic event localization using a crosspower-spectrum phase based technique. IEEE Int. Conf. Acoustics Speech Signal Process. 2, 273–276 (1994)Google Scholar
- 11.Chen, J., Huang, Y., Benesty, J.: Time delay estimation, In: Audio signal processing for next-generation multimedia communication systems. Springer, 197–227 (2004)Google Scholar
- 12.Gedalyahu, K., Eldar, Y.C.: Time-delay estimation from low-rate samples: a union of subspaces approach. IEEE Trans. Signal Process. 58(6), 3017–3031 (2010)MathSciNetCrossRefGoogle Scholar
- 13.Qasaymeh, M.M., Gami, H., Tayem, N., Sawan, M.E., Pendse, R.: Joint time delay and frequency estimation without eigen-decomposition. IEEE Signal Process. Lett. 16(5), 422–425 (2009)CrossRefGoogle Scholar
- 14.Liang, Y.C., Leyman, A.R.: Time delay estimation using higher order statistics. Electron. Lett. 33(9), 751–753 (1997)CrossRefGoogle Scholar
- 15.Hinich, M.J., Wilson, G.R.: Time delay estimation using the cross bispectrum. IEEE Trans. Signal Process. 40(1), 106–113 (1992)CrossRefGoogle Scholar
- 16.Sharma, K.K., Joshi, S.D.: Time delay estimation using fractional fourier transform. Signal Process. 87(5), 853–865 (2007)CrossRefMATHGoogle Scholar
- 17.Zhou, T., Li, H., Zhu, J., Xu, C.: Subsample time delay estimation of chirp signals using frft. Signal Process. 96, 110–117 (2014)CrossRefGoogle Scholar
- 18.Lui, K.W., Chan, F.K., So, H.C.: Accurate time delay estimation based passive localization. Signal Process. 89(9), 1835–1838 (2009)CrossRefMATHGoogle Scholar
- 19.Knapp, C.H., Carter, G.C.: The generalized correlation method for estimation of time delay. IEEE Trans. Acoust. Speech Signal Process. 24(4), 320–327 (1976)CrossRefGoogle Scholar
- 20.Dhull, S., Arya, S., Sahu, O.: Comparison of time-delay estimation techniques in acoustic environment. Int. J. Comput. Appl. 8(9), 29–31 (2010)Google Scholar
- 21.Stephenne, A., Champagne, B.: Cepstral prefiltering for time delay estimation in reverberant environments. Acoustics, Speech, and Signal Processing, ICASSP, 3055–3058 (1995)Google Scholar
- 22.Lyon, D.: The discrete fourier transform, part 6: Cross-correlation. J. Object Technol. 9(2), 17–22 (2010)CrossRefGoogle Scholar
- 23.Carter, G.C., Nuttall, A.H., Cable, P.G.: The smoothed coherence transform. Proc. IEEE 61(10), 1497–1498 (1973)CrossRefGoogle Scholar
- 24.Roth, P.R.: Effective measurements using digital signal analysis. IEEE Spectr. 4(8), 62–70 (1971)CrossRefGoogle Scholar
- 25.Hannan, E., Thomson, P.: Estimating group delay. Biometrika 60(2), 241–253 (1973)MathSciNetCrossRefMATHGoogle Scholar
- 26.Bedard, S., Champagne, B., Stephenne, A.: Effects of room reverberation on time-delay estimation performance. IEEE Int. Conf. Acoustics Speech Signal Process. 2, 261 (1994)Google Scholar
- 27.Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N.C., Tung, C. C., Liu, H. H.: The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 903–995 (1998)Google Scholar
- 28.Lei, Y., Lin, J., He, Z., Zuo, M.J.: A review on empirical mode decomposition in fault diagnosis of rotating machinery. Mech. Syst. Signal Process. 35(1), 108–126 (2013)CrossRefGoogle Scholar
- 29.Kopsinis, Y., McLaughlin, S.: Development of emd-based denoising methods inspired by wavelet thresholding. IEEE Trans. Signal Process. 57(4), 1351–1362 (2009)MathSciNetCrossRefGoogle Scholar
- 30.Boudraa, A.O., Cexus, J.C.: Denoising via empirical mode decomposition. Proc. IEEE ISCCSP. 4, (2006)Google Scholar
- 31.Weng, B., Blanco-Velasco, M., Barner, K.E.: Ecg denoising based on the empirical mode decomposition. Engineering in Medicine and Biology Society. (EMBS06), 1–4 (2006)Google Scholar
- 32.Rai, V.K., Mohanty, A.R.: Bearing fault diagnosis using fft of intrinsic mode functions in hilberthuang transform. Mech. Syst. Signal Process. 21(6), 2607–2615 (2007)CrossRefGoogle Scholar
- 33.Tsypkin, M.: Induction motor condition monitoring: Vibration analysis technique a twice line frequency component as a diagnostic tool. In: IEEE-International Electric Machines Drives Conference (IEMDC), 117–124 (2013)Google Scholar
- 34.Mohanty, A.R., Kar, C.: Fault detection in a multistage gearbox by demodulation of motor current waveform. IEEE Trans. Industr. Electron. 53(4), 1285–1297 (2006)CrossRefGoogle Scholar
- 35.Hyndman, R.J., Koehler, A.B.: Another look at measures of forecast accuracy. Int. J. Forecast. 22(4), 679–688 (2006)CrossRefGoogle Scholar