3D Bioprinted Integrated Osteochondral Scaffold-Mediated Repair of Articular Cartilage Defects in the Rabbit Knee

  • Yadong Yang
  • Geng Yang
  • Yongfei Song
  • Yimeng Xu
  • Siyu Zhao
  • Wenyuan ZhangEmail author
Original Article



To demonstrate that a 3D-bioprinted integrated osteochondral scaffold can provide improved repair of articular cartilage defects in the rabbit knee compared to that reported for traditional tissue-engineering methods.


Bone marrow mesenchymal stem cells were differentiated into osteoblasts and chondrocytes as seed cells and mixed with the corresponding bone and cartilage scaffold materials. An integrated osteochondral biphasic scaffold was fabricated via 3D-bioprinting technology through successive natural overlays of the printed material and used to repair full-thickness articular cartilage defects in the rabbit knee. Histological and biomechanical assessment of repaired tissue at 6 months post-transplantation showed almost complete repair of injured articular surfaces and presence of hyaline cartilage. A boundary existed between the transition and repair zones. The Wakitani histological score was 5.50 ± 2.07 points; maximum load was 183.11 ± 35.20 N. Repaired cartilage was integrated firmly with the subchondral bone and almost assimilated with surrounding cartilage and bone tissues.


The 3D bioprinted integrated osteochondral scaffold achieved double bionic effects on the scaffold composition and structure, and it is expected to offer a new strategy for articular cartilage repair and regeneration.


Sodium alginate Hydroxyapatite Bone marrow-derived mesenchymal stem cell 3D bioprinting Articular cartilage defect Scaffold material 



This research was supported by the Natural Science Foundation of Zhejiang Province of China (Nos. LY18H180010, LY17H060011, and LY17H280008), grants from the Zhejiang Provincial Medical Science and Technology Plan Project of China (Nos. 2015KYB092, 2017KY307, 2017KY299, 2017KY303, and 2019KY364), and grants from Zhejiang Provincial Traditional Chinese Medicine Science and Technology Plan Project of China (Nos. 2016ZA044, 2015ZA045, and 2018ZA017).


  1. 1.
    Baghaban, E. M., & Malakooty, P. E. (2014). Mesenchymal stem cells as a potent cell source for articular cartilage regeneration. World Journal of Stem Cells, 6, 344–354.CrossRefGoogle Scholar
  2. 2.
    Gratz, K. R., Wong, V. W., Chen, A. C., Fortier, L. A., Nixon, A. J., & Sah, R. L. (2006). Biomechanical assessment of tissue retrieved after in vivo cartilage defect repair: Tensile modulus of repair tissue and integration with host cartilage. Journal of Biomechanics, 39, 138–146.CrossRefGoogle Scholar
  3. 3.
    Jiang, J., Tang, A., Ateshian, G. A., Guo, X. E., Hung, C. T., & Lu, H. H. (2010). Bioactive stratified polymer ceramic-hydrogel scaffold for integrative osteochondral repair. Annals of Biomedical Engineering, 38, 2183–2196.CrossRefGoogle Scholar
  4. 4.
    Biao-Qi, C., Ranjith, K., Ai-Zheng, C., Ding-Zhu, Y., Xiao-Xia, C., Ni-Na, J., et al. (2017). Investigation of silk fibroin nanoparticle-decorated poly(l-lactic acid) composite, scaffolds for osteoblast growth and differentiation. International Journal of Nanomedicine, 12, 1877–1890.CrossRefGoogle Scholar
  5. 5.
    Yang, Q., Peng, J., Guo, Q., Huang, J., Zhang, L., Yao, J., et al. (2008). A cartilage EMC-derived 3-D porous acellular matrix scaffold for in vivo cartilage tissue engineering with PKH26-labeled chondrogenic bone marrow-derived mesenchymal stem cells. Biomaterials, 29, 2378–2387.CrossRefGoogle Scholar
  6. 6.
    Melissa, L. M., Greet, M., Jessica, R., Pascal, G., Petra, H., Peter, C., et al. (2018). Stem cells for cartilage repair: Preclinical studies and insights in translational animal models and outcome measures. Stem Cells International, 2018, 9079538.Google Scholar
  7. 7.
    Harley, B. A., Lynn, A. K., Wissner-Gross, Z., Bonfield, W., Yannas, I. V., & Gibson, L. J. (2010). Design of a multiphase osteochondral scaffold iii: Fabrication of layered scaffolds with continuous interfaces. Journal of Biomedical Materials Research, Part A, 92A, 1078–1093.Google Scholar
  8. 8.
    Kankala, R. K., Zhu, K., Li, J., Wang, C. S., Wang, S. B., & Chen, A. Z. (2017). Fabrication of arbitrary 3d components in cardiac surgery: From macro-, micro- to nanoscale. Biofabrication, 9, 032002.CrossRefGoogle Scholar
  9. 9.
    Neary, M., Barron, V., Barry, F., Shannon, F., & Murphy, M. (2018). Cartilage repair in a rabbit model: Development of a novel subchondral defect and assessment of early cartilage repair using rabbit mesenchymal stem cell seeded scaffold. Irish Journal of Medical Science, 183, S249–S250.Google Scholar
  10. 10.
    Park, J. Y., Choi, J. C., Shim, J. H., Lee, J. S., & Cho, D. W. (2014). A comparative study on collagen type I and hyaluronic acid dependent cell behavior for osteochondral tissue bioprinting. Biofabrication, 6, 035004.CrossRefGoogle Scholar
  11. 11.
    O’Reilly, A., & Kelly, D. J. (2016). A computational model of osteochondral defect repair following implantation of stem cell-laden multiphase scaffolds. Tissue Engineering Part A, 23, 30–42.CrossRefGoogle Scholar
  12. 12.
    Georgi, N., Van Blitterswijk, C., & Karperien, M. (2014). Mesenchymal stromal/stem cell- or chondrocyte-seeded microcarriers as building blocks for cartilage tissue engineering. Tissue Engineering Part A, 20, 2513–2523.CrossRefGoogle Scholar
  13. 13.
    Tritzschiavi, J., Charif, N., Henrionnet, C., De, I. N., Bensoussan, D., Magdalou, J., et al. (2010). Original approach for cartilage tissue engineering with mesenchymal stem cells. BioMedical Materials and Engineering, 20, 167–174.Google Scholar
  14. 14.
    Lam, J., Lu, S., Lee, E. J., Trachtenberg, J. E., Meretoja, V. V., Dahlin, R. L., et al. (2014). Osteochondral defect repair using bilayered hydrogels encapsulating both chondrogenically and osteogenically pre-differentiated mesenchymal stem cells in a rabbit model. Osteoarthritis and Cartilage, 22, 1291–1300.CrossRefGoogle Scholar
  15. 15.
    Meng, Y. H., Zhu, X. H., Yan, L. Y., Zhang, Y., Jin, H. Y., Xia, X., et al. (2016). Bone mesenchymal stem cells improve pregnancy outcome by inducing maternal tolerance to the allogeneic fetus in abortion-prone matings in mouse. Placenta, 47, 29–36.CrossRefGoogle Scholar
  16. 16.
    Ma, G., Zhao, J. L., Mao, M., Chen, J., & Liu, Y. P. (2016). Scaffold-based delivery of bone marrow mesenchymal stem cell sheet fragments enhances new bone formation in vivo. Journal of Oral and Maxillofacial Surgery: Official Journal of the American Association of Oral and Maxillofacial Surgeons, 75, 92–104.CrossRefGoogle Scholar
  17. 17.
    Yin, H., Wang, Y., Sun, Z., Sun, X., Xu, Y., Li, P., et al. (2016). Induction of mesenchymal stem cell chondrogenic differentiation and functional cartilage microtissue formation for in vivo cartilage regeneration by cartilage extracellular matrix-derived particles. Acta Biomaterialia, 33, 96–109.CrossRefGoogle Scholar
  18. 18.
    Zhang, W. Y., Yang, Y. D., He, C., & Chen, Y. (2004). Isolation culture and esteogenic differentiation of rabbit bone marrow-derived mesenchymal stem cells. Zhejiang Practical Medicine, 9, 393–395.Google Scholar
  19. 19.
    Zhang, W. Y., Yang, Y. D., He, C., & Chen, Y. (2004). Experimental studies of osteogenic and chondrogenic potentiality of rabbit bone marrow-derived mesenchymal stem cells. Modern Medicine Health, 20, 2083–2085.Google Scholar
  20. 20.
    Yadong, Y., Wenyuan, Z., Ying, L., Guojian, F., & Keji, Z. (2014). Scalded skin of rat treated by using fibrin glue combined with allogeneic bone marrow mesenchymal stem cells. Annals of Dermatology, 26, 289–295.CrossRefGoogle Scholar
  21. 21.
    Lee, W., Debasitis, J. C., Lee, V. K., Lee, J. H., Fischer, K., Edminster, K., et al. (2009). Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials, 30, 1587–1595.CrossRefGoogle Scholar
  22. 22.
    Wakitani, S., Goto, T., Pineda, S. J., Young, R. G., Mansour, J. M., Caplan, A. I., et al. (1994). Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. Journal of Bone and Joint Surgery-American, 76, 579–592.CrossRefGoogle Scholar
  23. 23.
    Fragonas, E., Valente, M., Pozzimucelli, M., Toffanin, R., Rizzo, R., Silvestri, F., et al. (2000). Articular cartilage repair in rabbits by using suspensions of allogenic chondrocytes in alginate. Biomaterials, 21, 795–801.CrossRefGoogle Scholar
  24. 24.
    Filion, T. M., Li, X., Mason-Savas, A., Kreider, J. M., Goldstein, S. A., Ayers, D. C., et al. (2011). Elastomeric osteoconductive synthetic scaffolds with acquired osteoinductivity expedite the repair of critical femoral defects in rats. Tissue Engineering Part A, 17, 503–511.CrossRefGoogle Scholar
  25. 25.
    Jiang, J., Hao, W., Li, Y., Yao, J., Shao, Z., Li, H., et al. (2013). Hydroxyapatite/regenerated silk fibroin scaffold-enhanced osteoinductivity and osteoconductivity of bone marrow-derived mesenchymal stromal cells. Biotechnology Letters, 35, 657–661.CrossRefGoogle Scholar
  26. 26.
    Xue, D., Zheng, Q., Zong, C., Li, Q., Li, H., Qian, S., et al. (2010). Osteochondral repair using porous poly(lactide-co-glycolide)/nano-hydroxyapatite hybrid scaffolds with undifferentiated mesenchymal stem cells in a rat model. Journal of Biomedical Materials Research, Part A, 94A, 259–270.CrossRefGoogle Scholar
  27. 27.
    Araki, S., Imai, S., Ishigaki, H., Mimura, T., Nishizawa, K., Ueba, H., et al. (2015). Improved quality of cartilage repair by bone marrow mesenchymal stem cells for treatment of an osteochondral defect in a cynomolgus macaque model. Acta Orthopaedica, 86, 119–126.CrossRefGoogle Scholar
  28. 28.
    Kalson, N. S., Gikas, P. D., & Briggs, T. W. (2010). Current strategies for knee cartilage repair. International Journal of Clinical Practice, 64, 1444–1452.CrossRefGoogle Scholar
  29. 29.
    Freed, L. E., Grande, D. A., Lingbin, Z., Emmanual, J., Marquis, J. C., & Langer, R. (2010). Joint resurfacing using allograft chondrocytes and synthetic biodegradable polymer scaffolds. Journal of Biomedical Materials Research, Part A, 28, 891–899.CrossRefGoogle Scholar
  30. 30.
    Zhang, W., Lian, Q., Li, D., Wang, K., Jin, Z., Bian, W., et al. (2014). cartilage repair and subchondral bone reconstruction based on three-dimensional printing technique. Chinese Journal of Reparative and Reconstructive Surgery, 28, 318–324.Google Scholar
  31. 31.
    Wang, F., Yang, L., Duan, X., Tan, H., & Dai, G. (2008). Study on shape and structure of calcified cartilage zone in normal human knee joint. Chinese Journal of Reparative and Reconstructive Surgery, 27, 524–527.Google Scholar
  32. 32.
    Havelka, S., Horn, V., Spohrová, D., & Valouch, P. (1984). The calcified–noncalcified cartilage interface: The tidemark. Acta Biologica Hungarica, 35, 271–279.Google Scholar
  33. 33.
    Mansfield, J. C., & Winlove, C. P. (2012). A multi-modal multiphoton investigation of microstructure in the deep zone and calcified cartilage. Journal of Anatomy, 220, 405–416.CrossRefGoogle Scholar
  34. 34.
    Dua, R., Centeno, J., & Ramaswamy, S. (2014). Augmentation of engineered cartilage to bone integration using hydroxyapatite. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 102, 922–932.CrossRefGoogle Scholar
  35. 35.
    Nosewicz, T. L., Reilingh, M. L., Wolny, M., Dijk, C. N. V., & Schell, H. (2013). Influence of basal support and early loading on bone cartilage healing in press-fitted osteochondral autografts. Knee Surgery, Sports Traumatology, Arthroscopy, 22, 1445–1451.Google Scholar
  36. 36.
    Viti, F., Scaglione, S., Orro, A., & Milanesi, L. (2014). Guidelines for managing data and processes in bone and cartilage tissue engineering. BMC Bioinformatics, 15, S14.CrossRefGoogle Scholar

Copyright information

© Taiwanese Society of Biomedical Engineering 2019

Authors and Affiliations

  • Yadong Yang
    • 1
  • Geng Yang
    • 1
  • Yongfei Song
    • 1
  • Yimeng Xu
    • 1
  • Siyu Zhao
    • 1
  • Wenyuan Zhang
    • 1
    Email author
  1. 1.Institute of BioengineeringZhejiang Academy of Medical SciencesHangzhouChina

Personalised recommendations