Advertisement

Journal of Medical and Biological Engineering

, Volume 39, Issue 4, pp 569–582 | Cite as

Mammographic Image Classification System via Active Learning

  • Yu Zhao
  • Dong Chen
  • Hongzhi XieEmail author
  • Shuyang Zhang
  • Lixu GuEmail author
Original Article
  • 106 Downloads

Abstract

Training an accurate prediction model for mammographic image classification is usually necessary to require a large number of labeled images. However, the manually acquiring rich and reliable annotations is known to be tedious and time-consuming process, especially for medical image. The advances in machine learning yielded a branch of technique, termed active learning (AL), which has been proposed for solving the problem of the limited training samples and expensive labeling cost, and has resulted in highly successful applications in many pattern recognition tasks such as image processing and speech recognition. In this article, a comparison is provided among the mammographic image classification systems, relying on traditional supervised learning, un-supervised learning and AL, aiming to obtain a system with low labeling cost. The experiments based on digital database for screening mammography demonstrate that the AL is able to minimize the labeling cost of mammographic image without sacrificing the accuracy of final classification system. In addition, some specific characteristics of mammographic image: file information and spatial feature, which are not available to the traditional AL methods, have been found to further decrease the labeling cost. In conclusion, we suggest that the AL is a reasonable alternative to supervised learning for the researchers in the field of medical image classification with limited experimental conditions.

Keywords

Image classification Active learning Mammography Labeling cost 

Notes

Acknowledgements

This research is partially supported by the National Key Research Program of China (2016YFC0106200), the 863 national research fund (2015AA043203) of China, the National Natural Science Foundation of China (81301283, 61190124 and 61271318), and the special funding of capital health research and development with No. 2016-1-4011. The authors are grateful to the Massachusetts General Hospital, the University of South Florida, and Sandia National Laboratories, which provides DDSM as a resource for our experimental data. We also express our sincere gratitude towards Department of Computer Science in University of North Carolina at Charlotte for their free tech support.

Compliance with Ethical Standards

Conflict of interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Ethical Approval

The study doesn’t involve human or animal subjects.

Supplementary material

40846_2018_437_MOESM1_ESM.xlsx (1001 kb)
Supplementary material 1 (XLSX 1001 kb)

References

  1. 1.
    Oliver, A., Freixenet, J., Marti, J., Perez, E., Pont, J., Denton, E. R., et al. (2010). A review of automatic mass detection and segmentation in mammographic images. Medical Image Analysis, 14, 87–110.  https://doi.org/10.1016/j.media.2009.12.005.CrossRefGoogle Scholar
  2. 2.
    World Health Organization. (2012). International Agency for Research on Cancer GLOBOCAN 2012: Estimated cancer incidence, mortality and prevalence worldwide in 2012. Geneva: WHO.Google Scholar
  3. 3.
    Sickles, E. A. (1989). Breast masses: Mammographic evaluation. Radiology, 173, 297–303.  https://doi.org/10.1148/radiology.173.2.2678242.CrossRefGoogle Scholar
  4. 4.
    Kooi, T., Litjens, G., van Ginneken, B., Gubern-Mérida, A., Sánchez, C. I., Mann, R., et al. (2017). Large scale deep learning for computer aided detection of mammographic lesions. Medical Image Analysis, 35, 303–312.  https://doi.org/10.1016/j.media.2016.07.007.CrossRefGoogle Scholar
  5. 5.
    de Lima, S. M., da Silva-Filho, A. G., & dos Santos, W. P. (2016). Detection and classification of masses in mammographic images in a multi-kernel approach. Computer Methods and Programs in Biomedicine, 134, 11–29.  https://doi.org/10.1016/j.cmpb.2016.04.029.CrossRefGoogle Scholar
  6. 6.
    Bekker, A. J., Shalhon, M., Greenspan, H., & Goldberger, J. (2015). Learning to combine decisions from multiple mammography views. In 2015 IEEE 12th international symposium on biomedical imaging (ISBI) (pp. 97–100). IEEE.  https://doi.org/10.1109/isbi.2015.7163825.
  7. 7.
    Andersson, I., Hildell, J., Muhlow, A., & Pettersson, H. (1978). Number of projections in mammography: Influence on detection of breast disease. American Journal of Roentgenology, 130, 349–351.  https://doi.org/10.2214/ajr.130.2.349.CrossRefGoogle Scholar
  8. 8.
    Sickles, E., Weber, W., Galvin, H., Ominsky, S., & Sollitto, R. (1986). Baseline screening mammography: One vs two views per breast. American Journal of Roentgenology, 147, 1149–1153.  https://doi.org/10.2214/ajr.147.6.1149.CrossRefGoogle Scholar
  9. 9.
    Lladó, X., Oliver, A., Freixenet, J., Martí, R., & Martí, J. (2009). A textural approach for mass false positive reduction in mammography. Computerized Medical Imaging and Graphics, 33, 415–422.  https://doi.org/10.1016/j.compmedimag.2009.03.007.CrossRefGoogle Scholar
  10. 10.
    Buciu, I., & Gacsadi, A. (2011). Directional features for automatic tumor classification of mammogram images. Biomedical Signal Processing and Control, 6, 370–378.  https://doi.org/10.1016/j.bspc.2010.10.003.CrossRefGoogle Scholar
  11. 11.
    Sampaio, W. B., Diniz, E. M., Silva, A. C., De Paiva, A. C., & Gattass, M. (2011). Detection of masses in mammogram images using CNN, geostatistic functions and SVM. Computers in Biology and Medicine, 41, 653–664.  https://doi.org/10.1016/j.compbiomed.2011.05.017.CrossRefGoogle Scholar
  12. 12.
    Junior, G. B., da Rocha, S. V., Gattass, M., Silva, A. C., & de Paiva, A. C. (2013). A mass classification using spatial diversity approaches in mammography images for false positive reduction. Expert Systems with Applications, 40, 7534–7543.  https://doi.org/10.1016/j.eswa.2013.07.034.CrossRefGoogle Scholar
  13. 13.
    de Oliveira, F. S. S., de Carvalho Filho, A. O., Silva, A. C., de Paiva, A. C., & Gattass, M. (2015). Classification of breast regions as mass and non-mass based on digital mammograms using taxonomic indexes and SVM. Computers in Biology and Medicine, 57, 42–53.  https://doi.org/10.1016/j.compbiomed.2014.11.016.CrossRefGoogle Scholar
  14. 14.
    Kashyap, K. L., Bajpai, M. K., & Khanna, P. (2017). Globally supported radial basis function based collocation method for evolution of level set in mass segmentation using mammograms. Computers in Biology and Medicine, 87, 22–37.  https://doi.org/10.1016/j.compbiomed.2017.05.015.CrossRefGoogle Scholar
  15. 15.
    Costa, D. D., Campos, L. F., & Barros, A. K. (2011). Classification of breast tissue in mammograms using efficient coding. Biomedical Engineering Online, 10, 55.  https://doi.org/10.1186/1475-925x-10-55.CrossRefGoogle Scholar
  16. 16.
    Beura, S., Majhi, B., & Dash, R. (2015). Mammogram classification using two dimensional discrete wavelet transform and gray-level co-occurrence matrix for detection of breast cancer. Neurocomputing, 154, 1–14.  https://doi.org/10.1016/j.neucom.2014.12.032.CrossRefGoogle Scholar
  17. 17.
    Saki, F., Tahmasbi, A., Soltanian-Zadeh, H., & Shokouhi, S. B. (2013). Fast opposite weight learning rules with application in breast cancer diagnosis. Computers in Biology and Medicine, 43, 32–41.  https://doi.org/10.1016/j.compbiomed.2012.10.006.CrossRefGoogle Scholar
  18. 18.
    Oliver, A., Marti, J., Marti, R., Bosch, A., & Freixenet, J. (2006). A new approach to the classification of mammographic masses and normal breast tissue. In 18th International conference on pattern recognition, 2006. ICPR 2006 (pp. 707–710). IEEE.  https://doi.org/10.1109/icpr.2006.113.
  19. 19.
    Vadivel, A., & Surendiran, B. (2013). A fuzzy rule-based approach for characterization of mammogram masses into BI-RADS shape categories. Computers in Biology and Medicine, 43, 259–267.  https://doi.org/10.1016/j.compbiomed.2013.01.004.CrossRefGoogle Scholar
  20. 20.
    Raghavendra, U., Acharya, U. R., Fujita, H., Gudigar, A., Tan, J. H., & Chokkadi, S. (2016). Application of Gabor wavelet and Locality Sensitive Discriminant Analysis for automated identification of breast cancer using digitized mammogram images. Applied Soft Computing, 46, 151–161.  https://doi.org/10.1016/j.asoc.2016.04.036.CrossRefGoogle Scholar
  21. 21.
    Jiang, F., Liu, H., Yu, S., & Xie, Y. (2017). Breast mass lesion classification in mammograms by transfer learning. In Proceedings of the 5th international conference on bioinformatics and computational biology, 2017 (pp. 59–62). ACM.  https://doi.org/10.1145/3035012.3035022.
  22. 22.
    Do, C. B., & Batzoglou, S. (2008). What is the expectation maximization algorithm? Nature Biotechnology, 26, 897.  https://doi.org/10.1038/nbt1406.CrossRefGoogle Scholar
  23. 23.
    Kohonen, T. (1998). The self-organizing map. Neurocomputing, 21, 1–6.  https://doi.org/10.1016/s0925-2312(98)00030-7.CrossRefzbMATHGoogle Scholar
  24. 24.
    Braspenning, P. J., & Thuijsman, F. (1995). Artificial neural networks: An introduction to ANN theory and practice (Vol. 931, pp. 101–117). Berlin: Springer.CrossRefzbMATHGoogle Scholar
  25. 25.
    Settles, B. (2010). Active learning literature survey 52-11. Madison, WI: University of Wisconsin.Google Scholar
  26. 26.
    Panda, N., Goh, K.-S., & Chang, E. Y. (2006). Active learning in very large databases. Multimedia Tools and Applications, 31, 249–267.  https://doi.org/10.1007/s11042-006-0043-1.CrossRefGoogle Scholar
  27. 27.
    Demir, B., Persello, C., & Bruzzone, L. (2011). Batch-mode active-learning methods for the interactive classification of remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 49, 1014–1031.  https://doi.org/10.1109/tgrs.2010.2072929.CrossRefGoogle Scholar
  28. 28.
    Shannon, C. E. (2001). A mathematical theory of communication. ACM SIGMOBILE Mobile Computing and Communications Review, 5, 3–55.  https://doi.org/10.1002/j.1538-7305.1948.tb01338.x.CrossRefGoogle Scholar
  29. 29.
    Fu, W., Hao, S., & Wang, M. (2016). Active learning on anchorgraph with an improved transductive experimental design. Neurocomputing, 171, 452–462.  https://doi.org/10.1016/j.neucom.2015.06.046.CrossRefGoogle Scholar
  30. 30.
    Tong, S., & Koller, D. (2001). Support vector machine active learning with applications to text classification. Journal of Machine Learning Research, 2, 45–66.  https://doi.org/10.1162/153244302760185243.zbMATHGoogle Scholar
  31. 31.
    Muslea, I., Minton, S., & Knoblock, C. A. (2006). Active learning with multiple views. Journal of Artificial Intelligence Research, 27, 203–233.  https://doi.org/10.1613/jair.2005.MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Freund, Y., Seung, H. S., Shamir, E., & Tishby, N. (1997). Selective sampling using the query by committee algorithm. Machine Learning, 28, 133–168.  https://doi.org/10.1023/a:1007330508534.CrossRefzbMATHGoogle Scholar
  33. 33.
    Lewis, D. D., & Catlett, J. (1994). Heterogeneous uncertainty sampling for supervised learning. In Machine learning proceedings 1994 (pp. 148–156). Elsevier.  https://doi.org/10.1016/b978-1-55860-335-6.50026-x.
  34. 34.
    Settles, B., Craven, M., & Ray, S. (2008). Multiple-instance active learning. In Advances in neural information processing systems, 2008 (pp. 1289–1296).Google Scholar
  35. 35.
    Olsson, F. (2009). A literature survey of active machine learning in the context of natural language processing. Swedish Institute of Computer Science.Google Scholar
  36. 36.
    Hoi, S. C., Jin, R., Zhu, J., & Lyu, M. R. (2006). Batch mode active learning and its application to medical image classification. In Proceedings of the 23rd international conference on machine learning, 2006 (pp. 417–424). ACM.  https://doi.org/10.1145/1143844.1143897.
  37. 37.
    Rubens, N., Elahi, M., Sugiyama, M., & Kaplan, D. (2015). Active learning in recommender systems. In Recommender systems handbook (pp. 809–846). Springer.  https://doi.org/10.1007/978-0-387-85820-3_23.
  38. 38.
    Zhang, C., & Chen, T. (2002). An active learning framework for content-based information retrieval. IEEE Transactions on Multimedia, 4, 260–268.  https://doi.org/10.1109/tmm.2002.1017738.CrossRefGoogle Scholar
  39. 39.
    Heath, M., Bowyer, K., Kopans, D., Kegelmeyer, P., Moore, R., Chang, K., & Munishkumaran, S. (1998). Current status of the digital database for screening mammography. In Digital mammography (pp. 457–460). Springer.  https://doi.org/10.1007/978-94-011-5318-8_75.
  40. 40.
    USF digital mammography home page (2007). http://marathon.csee.usf.edu/Mammography/Database.html.
  41. 41.
    Rose, C., Turi, D., Williams, A., Wolstencroft, K., & Taylor, C. (2006). Web services for the DDSM and digital mammography research. In International workshop on digital mammography, 2006 (pp. 376–383). Springer.  https://doi.org/10.1007/11783237_51.
  42. 42.
    Karssemeijer, N., & te Brake, G. M. (1996). Detection of stellate distortions in mammograms. IEEE Transactions on Medical Imaging, 15, 611–619.  https://doi.org/10.1109/42.538938.CrossRefGoogle Scholar
  43. 43.
    Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. In IEEE Computer Society conference on computer vision and pattern recognition, 2005. CVPR 2005 (pp. 886–893). IEEE.  https://doi.org/10.1109/cvpr.2005.177.
  44. 44.
    Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2, 37–52.  https://doi.org/10.1016/0169-7439(87)80084-9.CrossRefGoogle Scholar
  45. 45.
    Gumus, E., Kilic, N., Sertbas, A., & Ucan, O. N. (2010). Evaluation of face recognition techniques using PCA, wavelets and SVM. Expert Systems with Applications, 37, 6404–6408.  https://doi.org/10.1016/j.eswa.2010.02.079.CrossRefGoogle Scholar
  46. 46.
    Liu, G., Gao, X., You, D., & Zhang, N. (2016). Prediction of high power laser welding status based on PCA and SVM classification of multiple sensors. Journal of Intelligent Manufacturing.  https://doi.org/10.1007/s10845-016-1286-y.Google Scholar
  47. 47.
    Moura, D. C., & López, M. A. G. (2013). An evaluation of image descriptors combined with clinical data for breast cancer diagnosis. International Journal of Computer Assisted Radiology and Surgery, 8, 561–574.  https://doi.org/10.1007/s11548-013-0838-2.CrossRefGoogle Scholar
  48. 48.
    Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273–297.  https://doi.org/10.1007/bf00994018.zbMATHGoogle Scholar
  49. 49.
    Chang, C.-C., & Lin, C.-J. (2011). LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2, 27.  https://doi.org/10.1145/1961189.1961199.CrossRefGoogle Scholar
  50. 50.
    Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27, 861–874.  https://doi.org/10.1016/j.patrec.2005.10.010.CrossRefGoogle Scholar
  51. 51.
    Huang, H., Zhang, C., Hu, Q., & Zhu, P. (2016). Multi-view representative and informative induced active learning. In Pacific Rim international conference on artificial intelligence, 2016 (pp. 139–151). Springer.  https://doi.org/10.1007/978-3-319-42911-3_12.

Copyright information

© Taiwanese Society of Biomedical Engineering 2018

Authors and Affiliations

  1. 1.Image Guided Surgery and Virtual Reality Lab, School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Department of CardiologyPeking Union Medical College HospitalBeijingChina

Personalised recommendations