Advertisement

Journal of Medical and Biological Engineering

, Volume 39, Issue 4, pp 523–531 | Cite as

Influence of Vitamin D Status and Mechanical Loading on the Morphometric and Mechanical Properties of the Mouse Tibia

  • Yong-Tao Lu
  • Zhen-Tao Cui
  • Han-Xing Zhu
  • Ru-Kun Ma
  • Cheng-Wei WuEmail author
Original Article
  • 90 Downloads

Abstract

It is well known that vitamin D and mechanical loading play important roles in bone growth and development. However, the combined effect of the maternal vitamin D status and mechanical loading on the bone quality of growing and mature bones is still unclear. The aim of this study was to investigate the influence of the antenatal vitamin D status and mechanical loading on bone morphometric and mechanical properties in juvenile and adult bones. C57BL/6J mice were used to generate vitamin D-replete and vitamin D-depleted dams. The left tibiae of 8-week-old and 16-week-old offspring were mechanically loaded in vivo for two weeks. Both tibiae were dissected and scanned using a μCT imaging system. It was found that in the bones of 10-week-old juvenile offspring, the antenatal vitamin D-replete group significantly increased trabecular bone volume fraction (Tb.BV/TV), trabecular thickness (Tb.Th), cortical thickness (Ct.Th), bone stiffness and failure load; significantly decreased trabecular separation (Tb.Sp) and cortical marrow area (Ct.MA) only in loaded tibiae; and markedly increased Tb.Sp and Ct.MA only in non-loaded tibiae. In the bones of the 18-week-old adult offspring, the antenatal vitamin D status had a minimal effect on the bone morphometric and mechanical parameters. These data imply that antenatal vitamin D repletion results in increased responses to mechanical loading only in the juvenile state, emphasizing the importance of a sufficient vitamin D supply during pregnancy and sufficient physical activities during the juvenile period to increase bone quality.

Keywords

Vitamin D Mouse tibia Morphometric analysis Mechanical properties Finite element analysis 

Notes

Acknowledgements

This work was funded by the National Natural Science Foundation of China (11702057, 11772086), the Chinese Fundamental Research Funds for the Central Universities (DUT18LK19) and the Open Fund from the State Key Laboratory of Structural Analysis for Industrial Equipment (GZ1611), Dalian University of Technology.

Compliance with Ethical Standards

Conflict of interest

The authors declare that there are no financial or personal relationships with other persons or organizations that might inappropriately influence this work.

References

  1. 1.
    Johnell, O., & Kanis, J. (2005). Epidemiology of osteoporotic fractures. Osteoporos Int, 16(Suppl 2), S3–S7.CrossRefGoogle Scholar
  2. 2.
    Kanis, J. A., & Johnell, O. (2005). Requirements for DXA for the management of osteoporosis in Europe. Osteoporos Int, 16(3), 229–238.CrossRefGoogle Scholar
  3. 3.
    Levchuk, A., Zwahlen, A., Weigt, C., Lambers, F. M., Badilatti, S. D., Schulte, F. A., et al. (2014). The Clinical Biomechanics Award 2012—presented by the European Society of Biomechanics: large scale simulations of trabecular bone adaptation to loading and treatment. Clin Biomech, 29(4), 355–362.CrossRefGoogle Scholar
  4. 4.
    Birkhold, A. I., Razi, H., Duda, G. N., Weinkamer, R., Checa, S., & Willie, B. M. (2014). Mineralizing surface is the main target of mechanical stimulation independent of age: 3D dynamic in vivo morphometry. Bone, 66, 15–25.CrossRefGoogle Scholar
  5. 5.
    Ioannou, C., Javaid, M. K., Mahon, P., Yaqub, M. K., Harvey, N. C., Godfrey, K. M., et al. (2012). The effect of maternal vitamin D concentration on fetal bone. J Clin Endocrinol Metab, 97(11), E2070–E2077.  https://doi.org/10.1210/jc.2012-2538.CrossRefGoogle Scholar
  6. 6.
    Viljakainen, H. T., Saarnio, E., Hytinantti, T., Miettinen, M., Surcel, H., Mäkitie, O., et al. (2010). Maternal vitamin D status determines bone variables in the newborn. J Clin Endocrinol Metab, 95(4), 1749–1757.CrossRefGoogle Scholar
  7. 7.
    Zhu, K., Whitehouse, A. J., Hart, P. H., Kusel, M., Mountain, J., Lye, S., et al. (2014). Maternal vitamin D status during pregnancy and bone mass in offspring at 20 years of age: a prospective cohort study. J Bone Miner Res, 29(5), 1088–1095.CrossRefGoogle Scholar
  8. 8.
    Bouxsein, M. L., Myers, K. S., Shultz, K. L., Donahue, L. R., Rosen, C. J., & Beamer, W. G. (2005). Ovariectomy-induced bone loss varies among inbred strains of mice. J Bone Miner Res, 20(7), 1085–1092.  https://doi.org/10.1359/JBMR.050307.CrossRefGoogle Scholar
  9. 9.
    Boyd, S. K., Davison, P., Müller, R., & Gasser, J. A. (2006). Monitoring individual morphological changes over time in ovariectomized rats by in vivo micro-computed tomography. Bone, 39(4), 854–862.CrossRefGoogle Scholar
  10. 10.
    Klinck, R. J., Campbell, G. M., & Boyd, S. K. (2008). Radiation effects on bone architecture in mice and rats resulting from in vivo micro-computed tomography scanning. Med Eng Phys, 30(7), 888–895.CrossRefGoogle Scholar
  11. 11.
    De Souza, R. L., Matsuura, M., Eckstein, F., Rawlinson, S. C., Lanyon, L. E., & Pitsillides, A. A. (2005). Non-invasive axial loading of mouse tibiae increases cortical bone formation and modifies trabecular organization: a new model to study cortical and cancellous compartments in a single loaded element. Bone, 37(6), 810–818.CrossRefGoogle Scholar
  12. 12.
    Willie, B. M., Birkhold, A. I., Razi, H., Thiele, T., Aido, M., Kruck, B., et al. (2013). Diminished response to in vivo mechanical loading in trabecular and not cortical bone in adulthood of female C57BL/6 mice coincides with a reduction in deformation to load. Bone, 55(2), 335–346.CrossRefGoogle Scholar
  13. 13.
    Lu, Y., Boudiffa, M., Dall’Ara, E., Bellantuono, I., & Viceconti, M. (2016). Development of a protocol to quantify local bone adaptation over space and time: quantification of reproducibility. J Biomech, 49(10), 2095–2099.CrossRefGoogle Scholar
  14. 14.
    Lu, Y., Boudiffa, M., Dall’Ara, E., Bellantuono, I., & Viceconti, M. (2015). Evaluation of in vivo measurement errors associated with micro-computed tomography scans by means of the bone surface distance approach. Med Eng Phys, 37(11), 1091–1097.CrossRefGoogle Scholar
  15. 15.
    Turkowski, K. (1990). Filters for common resampling tasks. In A. S. Glassner (Ed.), Graphics gems (Vol. 1, pp. 147–165). Cambridge: Academic Press.CrossRefGoogle Scholar
  16. 16.
    Lu, Y., Boudiffa, M., Dall’Ara, E., Bellantuono, I., & Viceconti, M. (2017). Longitudinal effects of parathyroid hormone treatment on morphological, densitometric and mechanical properties of mouse tibia. J Mech Behav Biomed Mater, 75, 244–251.CrossRefGoogle Scholar
  17. 17.
    Oliviero, S., Lu, Y., Viceconti, M., & Dall’Ara, E. (2017). Effect of integration time on the morphometric, densitometric and mechanical properties of the mouse tibia. J Biomech, 65, 203–211.CrossRefGoogle Scholar
  18. 18.
    Bouxsein, M. L., Boyd, S. K., Christiansen, B. A., Guldberg, R. E., Jepsen, K. J., & Müller, R. (2010). Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res, 25(7), 1468–1486.CrossRefGoogle Scholar
  19. 19.
    Klinck, J., & Boyd, S. K. (2008). The magnitude and rate of bone loss in ovariectomized mice differs among inbred strains as determined by longitudinal in vivo micro-computed tomography. Calcif Tissue Int, 83(1), 70–79.CrossRefGoogle Scholar
  20. 20.
    Chen, Y., Dall Ara, E., Sales, E., Manda, K., Wallace, R., Pankaj, P., et al. (2017). Micro-CT based finite element models of cancellous bone predict accurately displacement once the boundary condition is well replicated: a validation study. J Mech Behav Biomed Mater, 65, 644–651.CrossRefGoogle Scholar
  21. 21.
    Knowles, N. K., Reeves, J. M., & Ferreira, L. M. (2016). Quantitative computed tomography (QCT) derived bone mineral density (BMD) in finite element studies: a review of the literature. J Exp Orthop, 3(1), 36.  https://doi.org/10.1186/s40634-016-0072-2.CrossRefGoogle Scholar
  22. 22.
    Easley, S. K., Jekir, M. G., Burghardt, A. J., Li, M., & Keaveny, T. M. (2010). Contribution of the intra-specimen variations in tissue mineralization to PTH- and raloxifene-induced changes in stiffness of rat vertebrae. Bone, 46(4), 1162–1169.  https://doi.org/10.1016/j.bone.2009.12.009.CrossRefGoogle Scholar
  23. 23.
    Yang, H., Butz, K. D., Duffy, D., Niebur, G. L., Nauman, E. A., & Main, R. P. (2014). Characterization of cancellous and cortical bone strain in the in vivo mouse tibial loading model using microCT-based finite element analysis. Bone, 66, 131–139.CrossRefGoogle Scholar
  24. 24.
    Helgason, B., Perilli, E., Schileo, E., Taddei, F., Brynjólfsson, S., & Viceconti, M. (2008). Mathematical relationships between bone density and mechanical properties: a literature review. Clin Biomech, 23(2), 135–146.CrossRefGoogle Scholar
  25. 25.
    Pistoia, W., van Rietbergen, B., Lochmüller, E. M., Lill, C. A., Eckstein, F., & Rüegsegger, P. (2002). Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images. Bone, 30(6), 842–848.CrossRefGoogle Scholar
  26. 26.
    Qasim, M., Farinella, G., Zhang, J., Li, X., Yang, L., Eastell, R., et al. (2016). Patient-specific finite element estimated femur strength as a predictor of the risk of hip fracture: the effect of methodological determinants. Osteoporos Int, 27(9), 2815–2822.CrossRefGoogle Scholar
  27. 27.
    Bayraktar, H. H., Morgan, E. F., Niebur, G. L., Morris, G. E., Wong, E. K., & Keaveny, T. M. (2004). Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. J Biomech, 37(1), 27–35.CrossRefGoogle Scholar
  28. 28.
    Birkhold, A. I., Razi, H., Duda, G. N., Weinkamer, R., Checa, S., & Willie, B. M. (2014). The influence of age on adaptive bone formation and bone resorption. Biomaterials, 35(34), 9290–9301.CrossRefGoogle Scholar
  29. 29.
    Holguin, N., Brodt, M. D., Sanchez, M. E., & Silva, M. J. (2014). Aging diminishes lamellar and woven bone formation induced by tibial compression in adult C57BL/6. Bone, 65, 83–91.CrossRefGoogle Scholar
  30. 30.
    Lynch, M. E., Main, R. P., Xu, Q., Schmicker, T. L., Schaffler, M. B., Wright, T. M., et al. (2011). Tibial compression is anabolic in the adult mouse skeleton despite reduced responsiveness with aging. Bone, 49(3), 439–446.CrossRefGoogle Scholar

Copyright information

© Taiwanese Society of Biomedical Engineering 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Structural Analysis for Industrial EquipmentDalian University of TechnologyDalianChina
  2. 2.Department of Engineering MechanicsDalian University of TechnologyDalianChina
  3. 3.School of EngineeringCardiff UniversityCardiffUK

Personalised recommendations