Advertisement

Journal of Medical and Biological Engineering

, Volume 39, Issue 1, pp 86–95 | Cite as

Differentiation Between Normal and Cancerous Human Urothelial Cell Lines Using Micro-Electrical Impedance Spectroscopy at Multiple Frequencies

  • Hyeon Woo Kim
  • Yangkyu Park
  • Joho Yun
  • Juhun Lim
  • Jeong Zoo Lee
  • Dong Gil ShinEmail author
  • Jong-Hyun LeeEmail author
Original Article
  • 100 Downloads

Abstract

The present study aims to investigate differences in impedance between normal (SV-HUC-1) and cancerous (TCCSUP) human urothelial cell lines at multiple frequencies by using a micro-electrical impedance spectroscopy (µEIS) device. A µEIS device was designed to measure the impedance of SV-HUC-1 and TCCSUP cells as the cells passed the sensing electrodes in the microfluidic channel. The cellular impedance was measured at frequencies of 10, 50, 100, 500 kHz, and 1 MHz, and the impedance values were compared at each frequency to investigate differences between the two cell lines. Additionally, the linear correlation between impedance and frequency was analyzed. The number of SV-HUC-1 and TCCSUP cells measured was 13 and 9, 21 and 10, 16 and 24, 8 and 8, and 11 and 22 cells at the frequencies of 10, 50, 100, 500 kHz, and 1 MHz, respectively. TCCSUP had significantly smaller amplitudes than SV-HUC-1 at 10, 50, and 100 kHz (p = 0.030, p = 0.031, and p < 0.001, respectively). Moreover, significant differences in phase angle were observed between cell lines at 100, 500 kHz, and 1 MHz (p < 0.001 in all). A significant difference between cell lines in terms of amplitude and phase angle was observed concurrently at 100 kHz. The amplitude of both the cell lines was negatively correlated to frequency, while the phase angle presented no correlation. In conclusion, the µEIS device could effectively differentiate between SV-HUC-1 and TCCSUP on the basis of their impedance.

Keywords

Diagnostic equipment Lab-on-a-chip devices Electrodes Engineering Technology Impedance 

Notes

Acknowledgements

This work was supported by the “Biomedical Integrated Technology Research” Project through a grant provided by Gwangju Institute of Science and Technology in 2016 and BioNano Health-Guard Research Center funded by the Ministry of Science, ICT & Future Planning (MSIP) of Korea as a Global Frontier Project (H-GUARD 2015M3A6B2063547).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Ferlay, J., Shin, H. R., Bray, F., Forman, D., Mathers, C., & Parkin, D. M. (2010). Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. International Journal of Cancer, 127(12), 2893–2917.Google Scholar
  2. 2.
    Babjuk, M., Oosterlinck, W., Sylvester, R., Kaasinen, E., Böhle, A., Palou-Redorta, J., et al. (2011). EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder, the 2011 update. European Urology, 59(6), 997–1008.Google Scholar
  3. 3.
    Stenzl, A., Cowan, N. C., De Santis, M., Kuczyk, M. A., Merseburger, A. S., Ribal, M. J., et al. (2011). Treatment of muscle invasive and metastatic bladder cancer: Update of the EAU guidelines. European Urology, 59(6), 1009–1018.Google Scholar
  4. 4.
    Kaufman, D. S., Shipley, W. U., & Feldman, A. S. (2009). Bladder cancer. Lancet, 374(9685), 2349–2392.Google Scholar
  5. 5.
    van Rhijn, B. W., Burger, M., Lotan, Y., Solsona, E., Stief, C. G., Sylvester, R. J., et al. (2009). Recurrence and progression of disease in non-muscle-invasive bladder cancer: From epidemiology to treatment strategy. European Urology, 56(3), 430–442.Google Scholar
  6. 6.
    van der Aa, M. N., Steyerberg, E. W., Sen, E. F., Zwarthoff, E. C., Kirkels, W. J., van der Kwast, T. H., et al. (2008). Patients’ perceived burden of cystoscopic and urinary surveillance of bladder cancer: A randomized comparison. BJU International, 101(9), 1106–1110.Google Scholar
  7. 7.
    Carmack, A. J., & Soloway, M. S. (2006). The diagnosis and staging of bladder cancer: From RBCs to TURs. Urology, 67(3 Suppl 1), 3–8.Google Scholar
  8. 8.
    Gutierrez Banos, J. L., Rebollo Rodrigo, M. H., Antolin Juarez, F. M., & Martín García, B. (2001). NMP 22, BTA stat test and cytology in the diagnosis of bladder cancer: A comparative study. Urologia Internationalis, 66(4), 185–190.Google Scholar
  9. 9.
    Pfister, C., Chautard, D., Devonec, M., Perrin, P., Chopin, D., Rischmann, P., et al. (2003). Immunocyt test improves the diagnostic accuracy of urinary cytology: Results of a French multicenter study. The Journal of Urology, 169(3), 921–924.Google Scholar
  10. 10.
    Grossman, H. B., Messing, E., Soloway, M., Tomera, K., Katz, G., Berger, Y., et al. (2005). Detection of bladder cancer using a point-of-care proteomic assay. The Journal of American Medical Association, 293(7), 810–816.Google Scholar
  11. 11.
    Vrooman, O. P., & Witjes, J. A. (2008). Urinary markers in bladder cancer. European Urology, 53(5), 909–916.Google Scholar
  12. 12.
    Hajdinjak, T. (2008). UroVysion FISH test for detecting urothelial cancers: Meta-analysis of diagnostic accuracy and comparison with urinary cytology testing. Urologic Oncology: Seminars and Original Investigations, 26(6), 646–651.Google Scholar
  13. 13.
    Rigaud, B., Morucci, J. P., & Chauveau, N. (1996). Bioelectrical impedance techniques in medicine. Part I: Bioimpedance measurement. Second section: Impedance spectrometry. Critical Reviews in Biomedical Engineering, 24(4–6), 257–351.Google Scholar
  14. 14.
    Morgan, H., Sun, T., Holmes, D., Gawad, S., & Green, N. G. (2007). Single cell dielectric spectroscopy. Journal of Physics D, 40(1), 61–70.Google Scholar
  15. 15.
    Irwin, J. D., & Nelms, R. M. (2006). Basic engineering circuit analysis (8th ed.). Hoboken: Wiley.Google Scholar
  16. 16.
    Faes, T. J., van der Meij, H. A., de Munck, J. C., & Heethaar, R. M. (1999). The electric resistivity of human tissues (100 Hz–10 MHz): A meta-analysis of review studies. Physiological Measurement, 20(4), R1–R10.Google Scholar
  17. 17.
    Gonzalez-Correa, C. A., Brown, B. H., Smallwood, R. H., Kalia, N., Stoddard, C. J., Stephenson, T. J., et al. (1999). Virtual biopsies in Barrett’s esophagus using an impedance probe. Annals of the New York Academy of Sciences, 873, 313–321.Google Scholar
  18. 18.
    Han, A., Yang, L., & Frazier, A. B. (2007). Quantification of the heterogeneity in breast cancer cell lines using whole-cell impedance spectroscopy. Clinical Cancer Research, 13(1), 139–143.Google Scholar
  19. 19.
    Kang, G., Yoo, S. K., Kim, H. I., & Lee, J. H. (2012). Differentiation between normal and cancerous cells at the single cell level using 3-D electrode electrical impedance spectroscopy. IEEE Sensors Journal, 12(5), 1084–1089.Google Scholar
  20. 20.
    Kang, G., Kim, Y. J., Moon, H. S., Lee, J. W., Yoo, T. K., Park, K., et al. (2013). Discrimination between the human prostate normal cell and cancer cell by using a novel electrical impedance spectroscopy controlling the cross-sectional area of a microfluidic channel. Biomicrofluidics, 7(4), 044126.Google Scholar
  21. 21.
    Chuang, C. H., Huang, Y. W., & Wu, Y. T. (2011). System-level biochip for impedance sensing and programmable manipulation of bladder cancer cells. Sensors, 11(11), 11021–11035.Google Scholar
  22. 22.
    Huang, Y., Chen, N., Borninski, J., Rubinsky, B. (2003). A novel microfluidic cell-chip for single cell analysis and manipulation. Proceedings of the 16th IEEE International Conference on Microelectromechanical Systems; Kyoto, Japan. Retrieved December 20–23, 2003 from  https://doi.org/10.1109/memsys.2003.1189771.
  23. 23.
    Gawad, S., Cheung, K., Seger, U., Bertsch, A., & Renaud, P. (2004). Dielectric spectroscopy in a micromachined flow cytometer: Theoretical and practical considerations. Lab on a Chip, 4(3), 241–251.Google Scholar
  24. 24.
    Poenar, D. P., Iliescu, C., Carp, M., Pang, A. J., & Leck, K. J. (2007). Glass-based microfluidic device fabricated by parylene wafer-to-wafer bonding for impedance spectroscopy. Sensors and Actuators A, 139(1–2), 162–171.Google Scholar
  25. 25.
    Pethig, R. (1984). Dielectric properties of biological materials: Biophysical and medical applications. IEEE Transactions on Electrical Insulation, EI-19(5), 453–474.Google Scholar
  26. 26.
    Gabriel, S., Lau, R. W., & Gabriel, C. (1996). The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Physics in Medicine & Biology, 41(11), 2251–2269.Google Scholar
  27. 27.
    Qiao, G., Duan, W., Chatwin, C., Sinclair, A., & Wang, W. (2010). Electrical properties of breast cancer cells from impedance measurement of cell suspensions measurement of cell suspensions. Journal of Physics: Conference Series, 224(1), 1–4.Google Scholar
  28. 28.
    O’Connell, M. P., Tidy, J., Wisher, S. J., Avis, N. J., Brown, B. H., & Lindow, S. W. (2000). An in vivo comparative study of the pregnant and nonpregnant cervix using electrical impedance measurements. BJOG: An International Journal of Obstetrics & Gynaecology, 107(8), 1040–1041.Google Scholar
  29. 29.
    Chen, J., Zheng, Y., Tan, Q., Zhang, Y. L., Li, J., Geddie, W. R., et al. (2011). A microfluidic device for simultaneous electrical and mechanical measurements on single cells. Biomicrofluidics, 5(1), 14113.Google Scholar
  30. 30.
    Park, Y., Kim, H. W., Yun, J., Seo, S., Park, C. J., Lee, J. Z., et al. (2016). Microelectrical impedance spectroscopy for the differentiation between normal and cancerous human urothelial cell lines: Real-time electrical impedance measurement at an optimal frequency. BioMed Research International.  https://doi.org/10.1155/2016/8748023.Google Scholar
  31. 31.
    Sun, T., Bernabini, C., & Morgan, H. (2010). Single-colloidal particle impedance spectroscopy: Complete equivalent circuit analysis of polyelectrolyte microcapsules. Langmuir, 26(6), 3821–3828.Google Scholar
  32. 32.
    Zhao, Y., Chen, D., Li, H., Luo, Y., Deng, B., Huang, S., et al. (2013). A microfluidic system enabling continuous characterization of specific membrane capacitance and cytoplasm conductivity of single cells in suspension. Biosensors & Bioelectronics, 43, 304–307.Google Scholar
  33. 33.
    Zheng, Y., Shojaei-Baghini, E., Wang, C., & Sun, Y. (2013). Microfluidic characterization of specific membrane capacitance and cytoplasm conductivity of single cells. Biosensors & Bioelectronics, 42, 496–502.Google Scholar
  34. 34.
    Hong, J., Lan, K., & Jang, L. (2012). Electrical characteristics analysis of various cancer cells using a microfluidic device based on single-cell impedance measurement. Sensors and Actuators B, 173, 927–934.Google Scholar
  35. 35.
    Guo, X., Zhu, R., & Zong, X. (2015). A microchip integrating cell array positioning with in situ single-cell impedance measurement. The Analyst, 140(19), 6571–6578.Google Scholar
  36. 36.
    Jang, L. S., & Wang, M. H. (2007). Microfluidic device for cell capture and impedance measurement. Biomedical Microdevices, 9(5), 737–743.Google Scholar
  37. 37.
    Das, D., Kamil, F. A., Biswasa, K., & Dasa, S. (2014). Evaluation of single cell electrical parameters from bioimpedance of a cell suspension. RSC Advances, 4(35), 18178–18185.Google Scholar

Copyright information

© Taiwanese Society of Biomedical Engineering 2018

Authors and Affiliations

  • Hyeon Woo Kim
    • 1
  • Yangkyu Park
    • 2
  • Joho Yun
    • 3
  • Juhun Lim
    • 3
  • Jeong Zoo Lee
    • 1
  • Dong Gil Shin
    • 1
    Email author
  • Jong-Hyun Lee
    • 2
    • 3
    Email author
  1. 1.Department of UrologyPusan National University HospitalBusanSouth Korea
  2. 2.School of Mechanical EngineeringGwangju Institute of Science and Technology (GIST)GwangjuSouth Korea
  3. 3.Department of Biomedical Science and EngineeringGwangju Institute of Science and Technology (GIST)GwangjuSouth Korea

Personalised recommendations