Journal of Medical and Biological Engineering

, Volume 39, Issue 4, pp 470–479 | Cite as

Experimental Research on the Impact of Alveolar Morphology on Deposition of Inhalable Particles in the Human Pulmonary Acinar Area

  • Rong Li
  • Xin-Xi XuEmail author
  • Yang Qiao
  • Xiu-Guo Zhao
Original Article


Studying the deposition pattern of inhalable particles in the pulmonary acinus has significance in clarifying the predisposing cause, progression, clinical treatment and prevention of common respiratory system diseases such as emphysema. In this study, we established an in vitro experimental model capable of simulating pulmonary acinar morphological lesions, such as emphysema and pulmonary atrophy. In addition, the deposition efficiencies of inhalable particles with various diameters in the pulmonary acinus were investigated under an unsteady state respiratory mode. The changes in pulmonary acinar morphology significantly affected the deposition rates of particles. Moreover, alveolar atrophy increased the deposition rate of particles, while pulmonary alveolar dilatation decreased the deposition rate. The results of this study may provide experimental evidence for the development of a disease course by pulmonary acinus morphologic changes. The established model also provides a feasible in vitro experimental model for studying the deposition pattern of inhalable particles in the pulmonary acinus.


Pulmonary acinus Inhalable particles Deposition Alveolar morphology 



This work was supported by the National Natural Science Foundation of China (Grant No. 31070832).


  1. 1.
    Tsuda, A., Henry, F. S., & Butler, J. P. (1995). Chaotic mixing of alveolated duct flow in rhythmically expanding pulmonary acinus. Journal of Applied Physiology, 79(3), 1055–1063.CrossRefGoogle Scholar
  2. 2.
    Darquenne, C., Harrington, L., & Prisk, G. K. (2009). Alveolar duct expansion greatly enhances aerosol deposition: A three-dimensional computational fluid dynamics study. Philosophical Transactions, 367(1896), 2333–2346.CrossRefGoogle Scholar
  3. 3.
    Sznitman, J., Heimsch, T., Wildhaber, J. H., Tsuda, A., & Rösgen, T. (2009). Respiratory flow phenomena and gravitational deposition in a three-dimensional space-filling model of the pulmonary acinar tree. Journal of Biomechanical Engineering, 131(3), 031010–031026.CrossRefGoogle Scholar
  4. 4.
    Darquenne, C. (2014). Aerosol deposition in the human lung in reduced gravity. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 27(3), 170–177.CrossRefGoogle Scholar
  5. 5.
    Hofemeier, P., Koshiyama, K., Wada, S., & Sznitman, J. (2018). One (sub-)acinus for all: Fate of inhaled aerosols in heterogeneous pulmonary acinar structures. European Journal of Pharmaceutical Sciences, 113(15), 53–63.CrossRefGoogle Scholar
  6. 6.
    Sznitman, J., Heimsch, F., Heimsch, T., Rusch, D., & Rösgen, T. (2007). Three-dimensional convective alveolar flow induced by rhythmic breathing motion of the pulmonary acinus. Journal of Biomechanical Engineering, 129(5), 658–665.CrossRefGoogle Scholar
  7. 7.
    Ma, B., & Darquenne, C. (2011). Aerosol deposition characteristics in distal acinar airways under cyclic breathing conditions. Journal of Applied Physiology, 110(5), 1271–1282.CrossRefGoogle Scholar
  8. 8.
    Oakes, J. M., Day, S., Weinstein, S. J., & Robinson, R. J. (2010). Flow field analysis in expanding healthy and emphysematous alveolar models using particle image velocimetry. Journal of Biomechanical Engineering, 132(2), 021008–021017.CrossRefGoogle Scholar
  9. 9.
    Li, Z., Zhang, H., Cui, H., & Li, Y. (2016). Numerical simulation on characteristics of airflow and particles depositon in three-dimensional pulmonary acinus. Chinese Journal of Applied Mechanics, 33(5), 806–812.Google Scholar
  10. 10.
    Hofemeier, P., & Sznitman, J. (2016). The role of anisotropic expansion for pulmonary acinar aerosol deposition. Journal of Biomechanics, 49(14), 3543–3548.CrossRefGoogle Scholar
  11. 11.
    Chhabra, S., & Prasad, A. K. (2010). Flow and particle dispersion in a pulmonary alveolus. Part 1. Velocity measurements and convective particle transport. Journal of Biomechanical Engineering, 132(5), 051009–051021.CrossRefGoogle Scholar
  12. 12.
    Berg, E. J., Weisman, J. L., Oldham, M. J., & Robinson, R. J. (2010). Flow field analysis in a compliant acinus replica model using particle image velocimetry (PIV). Journal of Biomechanics, 43(6), 1039–1047.CrossRefGoogle Scholar
  13. 13.
    Fishler, R., Mulligan, M. K., & Sznitman, J. (2013). Acinus-on-a-chip: A microfluidic platform for pulmonary acinar flows. Journal of Biomechanics, 46(16), 2817–2823.CrossRefGoogle Scholar
  14. 14.
    Fishler, R., Hofemeier, P., Etzion, Y., Dubowski, Y., & Sznitman, J. (2015). Particle dynamics and deposition in true-scale pulmonary acinar models. Scientific Reports, 5, 14071–14082.CrossRefGoogle Scholar
  15. 15.
    Fishler, R., Ostrovski, Y., Lu, C. Y., & Sznitman, J. (2017). Streamline crossing: An essential mechanism for aerosol dispersion in the pulmonary acinus. Journal of Biomechanics, 50, 222–227.CrossRefGoogle Scholar
  16. 16.
    Listed, N. (1994). Human respiratory tract model for radiological protection. A report of a Task Group of the International Commission on Radiological Protection. Annals of the Icrp, 24(1–3), 1.Google Scholar
  17. 17.
    Haefeli-Bleuer, B., & Weibel, E. R. (1988). Morphometry of the human pulmonary acinus. Anatomical Record Advances in Integrative Anatomy & Evolutionary Biology, 220(4), 401–414.Google Scholar
  18. 18.
    Żywczyk, Ł., & Moskal, A. (2012). Modeling of the influence of tissue mechanical properties on the process of aerosol particles deposition in a model of human alveolus. Journal of Drug Delivery Science & Technology, 22(2), 153–159.CrossRefGoogle Scholar
  19. 19.
    Sznitman, J. (2008). Respiratory flows in the pulmonary acinus and insights on the control of alveolar flows. Paper presented at the International Conference on Sensors and Control Techniques (ICSC2000).Google Scholar
  20. 20.
    Chen, J. H., Yuan, Z., Sheng, D. R., & Wei, L. I. (2012). Thermodynamic properties calculation method for moist air: 173 to 647 K. Journal of Zhejiang University (Engineering Science Edition), 46(4), 599–603.Google Scholar
  21. 21.
    Ding, Y. L., Cang, D. Q., & Yang, T. J. (1994). Concentration and viscosity of solid phase in a fully developed dilute gas-solid vertical flow. Journal of University Offence & Technology Beijing, 16(1), 20–25.Google Scholar
  22. 22.
    Sznitman, J. (2013). Respiratory microflows in the pulmonary acinus. Journal of Biomechanics, 46(2), 284–298.CrossRefGoogle Scholar
  23. 23.
    Hofemeier, P., & Sznitman, J. (2015). Revisiting pulmonary acinar particle transport: Convection, sedimentation, diffusion, and their interplay. Journal of Applied Physiology, 118(11), 1375–1385.CrossRefGoogle Scholar
  24. 24.
    Oakes, J. M., Hofemeier, P., Vignonclementel, I. E., & Sznitman, J. (2015). Aerosols in healthy and emphysematous in silico pulmonary acinar rat models. Journal of Biomechanics, 49(11), 2213–2220.CrossRefGoogle Scholar
  25. 25.
    Oakes, J. M., Marsden, A. L., Grandmont, C., Darquenne, C., & Vignon-Clementel, I. E. (2015). Distribution of aerosolized particles in healthy and emphysematous rat lungs: Comparison between experimental and numerical studies. Journal of Biomechanics, 48(6), 1147–1157.CrossRefGoogle Scholar
  26. 26.
    Nai-Fang, F. U., Dong, Z. C., Xian-Jun, L. I., Chen, X. Q., Pan, R. H., Zheng, Y. Y., et al. (2016). Research progress on treatment methods of occupational pneumoconiosis. Occupation & Health, 32(24), 3452–3456.Google Scholar
  27. 27.
    Huang, C., & Respiration, D. O. (2016). Treatment and effect of chronic obstructive pulmonary emphysema. China Continuing Medical Education, 4(26), 105–106.Google Scholar

Copyright information

© Taiwanese Society of Biomedical Engineering 2018

Authors and Affiliations

  1. 1.Institute of Medical Support TechnologyAcademy of Military SciencesTianjinChina
  2. 2.Department of Military Protective Medicine LogisticsUniversity of Chinese People’s Armed Police ForceTianjinChina

Personalised recommendations