Journal of Medical and Biological Engineering

, Volume 39, Issue 1, pp 117–125 | Cite as

Comparison of Different Pullout Test Setups for Evaluation of Bone–Implant Interfacial Strength of Anterior Lumbar Interbody Fusion Devices

  • Ting-Kuo Chang
  • Ching-Chi HsuEmail author
Original Article


Experimental approaches have been widely used to investigate the bone–implant interfacial strength of anterior lumbar interbody fusion (ALIF) devices. However, improper design of experimental jigs and inconsistencies in cadaveric specimens might significantly impede the evaluation of different ALIF device designs. Therefore, this study aimed to investigate and compare various test setups in terms of their feasibility for conducting pullout tests on ALIF devices. Three types of pullout test setups for evaluating the interfacial strength of the ALIF devices were investigated. Then, finite element models of the L4–L5 segment with different ALIF device designs were developed and numerical analysis was performed. Finally, the results from all the pullout test setups were compared with those obtained from numerical analysis. The results indicated that the quasi-material and boundary pullout test setup (QMBPTS), which considered the effects of the composite material of the test specimens and mimicked the lumbar posterior element’s anatomy and loading mechanism, revealed a more realistic bone failure pattern and interfacial pullout strength compared with the general pullout test setup and the quasi-boundary pullout test setup. The finite element models could accurately predict the experimental results obtained using the QMBPTS. It was confirmed that QMBPTS is a feasible and inexpensive pullout test setup for evaluating the bone–implant interfacial pullout strength of ALIF devices. Both the experimental and numerical approaches could provide useful information for designing a biomechanical experiment to solve bone–implant loosening problems.


Anterior lumbar interbody fusion Interfacial strength Experiment Finite element analysis 



This work was sponsored by the Mackay Memorial Hospital-National Taiwan University of Science and Technology Joint Research Program under the Grant No. MMH-NTUST-103-09.

Compliance with Ethical Standards

Conflict of interest

The authors have no conflict of interest to report.


  1. 1.
    Beaubien, B. P., Derincek, A., Lew, W. D., & Wood, K. B. (2005). In vitro, biomechanical comparison of an anterior lumbar interbody fusion with an anteriorly placed, low-profile lumbar plate and posteriorly placed pedicle screws or translaminar screws. Spine, 30(16), 1846–1851.Google Scholar
  2. 2.
    Johnson, W. M., Nichols, T. A., Jethwani, D., & Guiot, B. H. (2007). In vitro biomechanical comparison of an anterior and anterolateral lumbar plate with posterior fixation following single-level anterior lumbar interbody fusion. Journal of Neurosurgery, 7(3), 332–335.Google Scholar
  3. 3.
    Deyo, R. A. (2015). Fusion surgery for lumbar degenerative disc disease: Still more questions than answers. The Spine Journal, 15(2), 272–274.Google Scholar
  4. 4.
    Ulrich, N. H., Kleinstück, F., Woernle, C. M., Antoniadis, A., Winklhofer, S., Burgstaller, J. M., et al. (2016). Clinical outcome in lumbar decompression surgery for spinal canal stenosis in the aged population: A prospective swiss multicenter cohort study. Spine, 40(6), 415–422.Google Scholar
  5. 5.
    Adams, M. A., & Roughley, P. J. (2006). What is intervertebral disc degeneration, and what causes it? Spine, 31(18), 2151–2161.Google Scholar
  6. 6.
    Yeager, M. S., Dupre, D. A., Cook, D. J., Oh, M. Y., Altman, D. T., & Cheng, B. C. (2015). Anterior lumbar interbody fusion with integrated fixation and adjunctive posterior stabilization: A comparative biomechanical analysis. Clinical Biomechanics, 30(8), 769–774.Google Scholar
  7. 7.
    Rao, P. J., Maharaj, M. M., Phan, K., Abeygunasekara, M. L., & Mobbs, R. J. (2015). Indirect foraminal decompression after anterior lumbar interbody fusion: A prospective radiographic study using a new pedicle-to-pedicle technique. The Spine Journal, 15(5), 817–824.Google Scholar
  8. 8.
    Yaylali, I., Ju, H., Yoo, J., Ching, A., & Hart, R. (2014). Intraoperative neurophysiological monitoring in anterior lumbar interbody fusion surgery. Journal of Clinical Neurophysiology, 31(4), 352–355.Google Scholar
  9. 9.
    Hadley, Z. S., Palmer, D. K., Williams, P. A., & Cheng, W. K. (2012). Pullout strength of anterior lumbar interbody fusion plates: Fixed versus variable angle screw designs. Journal of Spine. Scholar
  10. 10.
    Palmer, D. K., Rios, D., Patacxil, W. M., Williams, P. A., Cheng, W. K., & İnceoğlu, S. (2012). Pullout of a lumbar plate with varying screw lengths. International Journal of Spine Surgery, 6, 8–12.Google Scholar
  11. 11.
    Pezowicz, C., & Filipiak, J. (2009). Influence of loading history on the cervical screw pullout strength value. Acta of Bioengineering and Biomechanics, 11(3), 35–40.Google Scholar
  12. 12.
    Setzer, M., Eleraky, M., Johnson, W. M., Aghayev, K., Tran, N. D., & Vrionis, F. D. (2012). Biomechanical comparison of anterior cervical spine instrumentation techniques with and without supplemental posterior fusion after different corpectomy and discectomy combinations. Journal of Neurosurgery, 16(6), 579–584.Google Scholar
  13. 13.
    Bisschop, A., van Dieën, J. H., Kingma, I., van der Veen, A. J., Jiya, T. U., Mullender, M. G., et al. (2013). Torsion biomechanics of the spine following lumbar laminectomy: A human cadaver study. European Spine Journal, 22(8), 1785–1793.Google Scholar
  14. 14.
    Wilke, H. J., Mathes, B., Midderhoff, S., & Graf, N. (2015). Development of a scoliotic spine model for biomechanical in vitro studies. Clinical Biomechanics, 30(2), 182–187.Google Scholar
  15. 15.
    Hsu, C. C. (2013). Shape optimization for the subsidence resistance of an interbody device using simulation-based genetic algorithms and experimental validation. Journal of Orthopaedic Research, 31(7), 1158–1163.Google Scholar
  16. 16.
    Wang, T., Ball, J. R., Pelletier, M. H., & Walsh, W. R. (2014). Biomechanical evaluation of a biomimetic spinal construct. Journal of Experimental Orthopaedics. Scholar
  17. 17.
    Christophy, M., Senan, N. A. F., Lotz, J. C., & O’Reilly, O. M. (2012). A musculoskeletal model for the lumbar spine. Biomechanics and Modeling in Mechanobiology, 11(1–2), 19–34.Google Scholar
  18. 18.
    Tsai, P. I., Hsu, C. C., Chen, S. Y., Wu, T. H., & Huang, C. C. (2016). Biomechanical investigation into the structural design of porous additive manufactured cages using numerical and experimental approaches. Computers in Biology and Medicine, 76, 14–23.Google Scholar
  19. 19.
    Hillen, R. J., Bolsterlee, B., & Veeger, D. H. E. J. (2016). The biomechanical effect of clavicular shortening on shoulder muscle function, a simulation study. Clinical Biomechanics, 37, 141–146.Google Scholar
  20. 20.
    Pasha, S., Aubin, C. E., Labelle, H., Parent, S., & Mac-Thiong, J. M. (2015). The biomechanical effects of spinal fusion on the sacral loading in adolescent idiopathic scoliosis. Clinical Biomechanics, 30(9), 981–987.Google Scholar
  21. 21.
    Imai, K., Ohnishi, I., Bessho, M., & Nakamura, K. (2006). Nonlinear finite element model predicts vertebral bone strength and fracture site. Spine, 31(16), 1789–1794.Google Scholar
  22. 22.
    Dreischarf, M., Rohlmann, A., Bergmann, G., & Zander, T. (2012). Optimised in vitro applicable loads for the simulation of lateral bending in the lumbar spine. Medical Engineering & Physics, 34(6), 777–780.Google Scholar
  23. 23.
    Lee, C. H., Hsu, C. C., & Chaing, L. (2017). An optimization study for the bone–implant interface performance of lumbar vertebral body cages using a neurogenetic algorithm and verification experiment. Journal of Medical and Biological Engineering. Scholar
  24. 24.
    Kim, Y. Y., Choi, W. S., & Rhyu, K. W. (2012). Assessment of pedicle screw pullout strength based on various screw designs and bone densities—an ex vivo biomechanical study. The Spine Journal, 12(2), 164–168.Google Scholar
  25. 25.
    Evans, F. G. (1976). Mechanical properties and histology of cortical bone from younger and older men. The Anatomical Record, 185(1), 1–11.Google Scholar
  26. 26.
    Whitecloud, T. S., Butler, J. C., Cohen, J. L., & Candelora, P. D. (1989). Complications with the variable spinal plating system. Spine, 14(4), 472–476.Google Scholar
  27. 27.
    Chen, P., Miller, P. D., Delmas, P. D., Misurski, D. A., & Krege, J. H. (2006). Change in lumbar spine BMD and vertebral fracture risk reduction in teriparatide-treated postmenopausal women with osteoporosis. Journal of Bone and Mineral Research, 21(11), 1785–1790.Google Scholar
  28. 28.
    Favre, P., & Henderson, A. D. (2016). Prediction of stemless humeral implant micromotion during upper limb activities. Clinical Biomechanics, 36, 46–51.Google Scholar
  29. 29.
    Freeman, A. L., Camisa, W. J., Buttermann, G. R., & Malcolm, J. R. (2016). Flexibility and fatigue evaluation of oblique as compared with anterior lumbar interbody cages with integrated endplate fixation. Journal of Neurosurgery, 24(1), 54–59.Google Scholar
  30. 30.
    Domann, J., Mar, D., Johnson, A., James, J., & Friis, E. (2011). The analogue spine model: The first anatomically and mechanically correct synthetic physical model of the lumbar spine. The Spine Journal, 11(10), S155–S156.Google Scholar

Copyright information

© Taiwanese Society of Biomedical Engineering 2018

Authors and Affiliations

  1. 1.Department of Orthopedic SurgeryMackay Memorial HospitalTaipeiTaiwan, ROC
  2. 2.Department of MedicineMackay Medical CollegeTaipeTaiwan, ROC
  3. 3.Graduate Institute of Applied Science and TechnologyNational Taiwan University of Science and TechnologyTaipeiTaiwan, ROC

Personalised recommendations