Advertisement

Journal of Medical and Biological Engineering

, Volume 39, Issue 1, pp 18–26 | Cite as

New Modified SPIHT Algorithm for Data Compression System

  • Rong-Choi LeeEmail author
  • King-Chu Hung
Original Article
  • 38 Downloads

Abstract

This paper presents a new modified set partitioning in hierarchical trees (MSPIHT) algorithm, which is used to generate absolute data values, and to convert decimal numbers into binary as a bit-plane. Then a new encoding method is used to process electrocardiography (ECG) data compression systems. This new ECG compression system uses one-dimensional reversal round-off non-recursive discrete periodized wavelet transform (1D RRO-NRDPWT), a quantization scheme, the new MSPIHT encoding, MSPIHT decoding, an inverse quantization scheme, and an inverse one-dimensional RRO-NRDPWT to reconstruct ECG signals. Experiment results indicate that the proposed new MSPIHT algorithm can ensure that reconstructed and original signals are approximately the same, with low complexity coding. It can also reduce the ECG signal to very few bits, enable the development of smaller devices, reduce the required PC memory capacity, improve performance speed, obtain a high compression ratio and reduce the percentage root mean square difference values. Therefore, this new approach will enhance wireless transmission for improved medical care.

Keywords

Modified set partitioning in hierarchical trees (MSPIHT) Bit-plane Reversal round-off non-recursive discrete periodized wavelet transform 

References

  1. 1.
    Brechet, L., Lucas, M. F., Doncarli, C., & Farina, D. (2007). Compression of biomedical signals with mother wavelet optimization and best-basis wavelet packet selection. IEEE Transactions on Biomedical Engineering, 54(12), 2186–2192.CrossRefGoogle Scholar
  2. 2.
    Lee, S. J., Kim, J., Lee, M., et al. (2011). A real-time ECG data compression and transmission algorithm for an e-Health device. IEEE Transactions on Biomedical Engineering, 58, 2448–2455.CrossRefGoogle Scholar
  3. 3.
    Mamaghanian, H., Khaled, N., Atienza, D., Vandergheynst, P., et al. (2011). Compressed sensing for real-time energy-efficient ECG compression on wireless body sensor nodes. IEEE Transactions Biomedical Engineering, 58(9), 2456–2466.CrossRefGoogle Scholar
  4. 4.
    Zhang, Z., Jung, T. P., Makeig, S., & Rao, B. D. (2013). Compressed sensing for energy-efficient wireless telemonitoring of noninvasive fetal ECG via block sparse bayesian learning. IEEE Transactions on Biomedical Engineering, 60(2), 300–309.CrossRefGoogle Scholar
  5. 5.
    Ku, C. T., Wang, H. S., Hung, K. C., & Hung, Y. S. (2006). A novel ECG data compression method based on non-recursive discrete periodized wavelet transform. IEEE Transactions on Biomedical Engineering, 53(12), 2577–2583.CrossRefGoogle Scholar
  6. 6.
    Lee, H. W., Liu, B. D., Hung, K. C., Lei, S. F., Tsai, C. F., Wang, P. C., et al. (2009). Breast tumor classification of ultrasound images using a reversible round-off non-recursive 1-D discrete periodic wavelet transform. IEEE Transactions on Biomedical Engineering, 56(3), 880–884.CrossRefGoogle Scholar
  7. 7.
    Ku, C. T., Hung, K. C., Wu, T. C., & Wang, H. S. (2010). Wavelet-based ECG data compression system with linear quality control scheme. IEEE Transactions on Biomedical Engineering, 57(6), 1399–1409.CrossRefGoogle Scholar
  8. 8.
    Chin-Feng, T. S. A. I., Huan-Sheng, W. A. N. G., King- Chu, H. U. N. G., & Shih-Chang, H. S. I. A. (2008). Non-recursive discrete periodized wavelet transform using segment accumulation algorithm and reversible round-off approach. IEICE Transactions Informations and Systems., 11, 2666–2674.Google Scholar
  9. 9.
    Said, A., Pearlman, W. A., et al. (1996). A new, fast, and efficient image codec based on set partitioning in hierarchical trees. IEEE Transactions Circuits System Video Technology, 6(3), 243–250.CrossRefGoogle Scholar
  10. 10.
    Lu, Z., Kim, D. Y., & Pearlman, W. A. (2000). Wavelet compression of ECG signals by the set partitioning in hierarchical trees algorithm. IEEE Transactions on Biomedical Engineering, 47(7), 849–856.CrossRefGoogle Scholar
  11. 11.
    Ranjeet Kumar, A., Kumar, G., Akhil, A., & Singh, S. N. H. Jafri. (2014). Computational efficient method for ECG signal compression based on modified SPIHT technique. Internatonal Journal Biomedical Engineering and Technology, 15(2), 173–188.CrossRefGoogle Scholar
  12. 12.
    Ravichandran, C., & Malmurugan, N. (2016). En- hanced adaptive approach of video coding at very low bit rate using MSPIHT algorithm. Circuits and Systems, 7(8), 1233–1241.  https://doi.org/10.4236/cs.2016.78107.CrossRefGoogle Scholar
  13. 13.
    Vishwanath, M. (1994). The recursive pyramid algorithm for the discrete wavelet transform. IEEE Transactions Signal Process, 42(3), 673–677.CrossRefGoogle Scholar
  14. 14.
    Fry, T. W., & Hauck, S. A. (2005). SPIHT image compression on FPGAs. IEEE Transactions Circuits System Video Technology, 15(9), 1138–1147.CrossRefGoogle Scholar
  15. 15.
    Sharifahmadian, E. (2006). Wavelet compression of multichannel ecg data by enhanced set partitioning in hierarchical trees algorithm. In: 28th Annual International Conference on Engineering in Medicine and Biology Society (Vol. 8, pp. 5238–5243).Google Scholar
  16. 16.
    Jin, Y., & Lee, H. J. (2012). A block-based pass- parallel SPIHT algorithm. IEEE Transactions Circuits System Video Technology, 22(7), 1064–1075.CrossRefGoogle Scholar
  17. 17.
    Cheng, C. C., Tseng, P. C., & Chen, L. G. (2009). Multimode embedded compression codec engine for power-aware video coding system. IEEE Transactions Circuits System Video Technology, 19(2), 141–150.CrossRefGoogle Scholar
  18. 18.
    Song, Xiaoying, Huang, Qijun, Chang, Sheng, He, Jin, & Wang, Hao. (2017). Three-dimensional separate descendant-based SPIHT algorithm for fast compression of high-resolution medical image sequences. IET Image Processing, 11(1), 80–87.  https://doi.org/10.1049/iet-ipr.2016.0564.CrossRefGoogle Scholar
  19. 19.
    Corsonello, P., Perri, S., Staino, G., Lanuzza, M., & Cocorullo, G. (2006). Low bit rate image compression core for onboard space applications. IEEE Transactions Circuits System Video Technology, 16(1), 114–128.CrossRefGoogle Scholar
  20. 20.
    Tsung-Ching, Wu, Hung, King-Chu, Liu, Je-Hung, & Liu, Tung-Kuan. (2013). Wavelet-based ECG data compression optimization with genetic algorithm. Journal of Biomedical Science and Engineering, 6, 746–753.CrossRefGoogle Scholar
  21. 21.
    Hung, King-Chu, Tsung-Ching, Wu, Lee, Hsieh-Wei, & Liu, Tung-Kuan. (2014). EP-based wavelet coefficient quantization for linear distortion ECG data compression. Medical Engineering & Physics, 36, 809–821.CrossRefGoogle Scholar
  22. 22.
    MIT-BIH arrhythmia database.  https://doi.org/10.13026/C2F305.
  23. 23.
    Kumar, R., Kumar, A., & Pandey, R. K. (2013). Beta wavelet based ECG signal compression using lossless encoding with modified thresholding. Computer and Electrical Engineering, 39(1), 130–140.CrossRefGoogle Scholar

Copyright information

© Taiwanese Society of Biomedical Engineering 2018

Authors and Affiliations

  1. 1.Department Computer and Communication, College of EngineeringNational Kaohsiung First University of Science and TechnologyKaohsiung CityTaiwan, ROC

Personalised recommendations