Advertisement

Journal of Medical and Biological Engineering

, Volume 39, Issue 1, pp 43–53 | Cite as

Acoustic Perturbation of Breathing: A Newly Discovered Response to Soft Sounds in Rats Using an Approach of Image Analysis

  • Ta-Wei Shen
  • Tang-Jen Liu
  • Daniel Šuta
  • Chien-Cheng LeeEmail author
Original Article
  • 63 Downloads

Abstract

Whether soft sounds are effective in eliciting any reflexive body movements remains unknown. To detect the possible sound-induced changes of body movements in unconstrained rats, we had developed and tested a novel method of image analysis based on a modified optical flow algorithm. Data collection involved a digital camera that captured from above body images of an unrestrained rat, while a short-duration noise burst was presented unexpectedly at different intensities. Positive responses of acoustic perturbation of breathing were successfully detected over the chest or abdominal area in all 6 rats studied, and reported here for the first time. The reflex change was a relatively small sound-induced perturbation in the amplitude of breathing and/or in the inter-breath interval exceeding a statistical threshold of the pre-stimulus levels. Results showed that such acoustic perturbation of breathing could be elicited rather robustly (> 90%) even with very soft sounds (< 30 dB SPL, or Sound Pressure Level). We concluded that our method of image analysis was powerful enough to detect these subtle changes of breathing pattern in freely moving rats.

Keywords

Breathing pattern Acoustic reflex Soft sounds Optical flow Movement analysis 

Notes

Acknowledgements

We thank Dr. Paul Poon for helpful discussion and for reading the manuscript, and the suggestions of Jiri Popelar and Tetyana Chumak during the beginning part of experiment.

Funding

This study was supported by grants: Ministry of Science and Technology (Grant Number: MOST 104-2218-E-155-002), and partly supported by the Czech Science Foundation (Grant Number GACR 16-09086J).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethics Approval

The study was approved by the Animal Ethics Committee, National Cheng Kung University (NCKU), and was conducted in accordance with the laws and regulations in Taiwan controlling experiments on live animals.

Supplementary material

40846_2018_381_MOESM1_ESM.pdf (238 kb)
Supplementary material 1 (PDF 237 kb)
40846_2018_381_MOESM2_ESM.7z (6.5 mb)
Supplementary material 1 (7Z 6,623 kb)
40846_2018_381_MOESM3_ESM.pdf (77 kb)
Supplementary material 3 (PDF 76 kb)
40846_2018_381_MOESM4_ESM.pdf (59 kb)
Supplementary material 4 (PDF 58 kb)
40846_2018_381_MOESM5_ESM.pdf (54 kb)
Supplementary material 5 (PDF 53 kb)
40846_2018_381_MOESM6_ESM.pdf (50 kb)
Supplementary material 6 (PDF 49 kb)
40846_2018_381_MOESM7_ESM.pdf (315 kb)
Supplementary material 7 (PDF 315 kb)
40846_2018_381_MOESM8_ESM.mp4 (10.7 mb)
Supplementary material 8 (MP4 10970 kb)
40846_2018_381_MOESM9_ESM.pdf (41 kb)
Supplementary material 9 (PDF 40 kb)
40846_2018_381_MOESM10_ESM.pdf (106 kb)
Supplementary material 10 (PDF 105 kb)

References

  1. 1.
    Kaltenbach, J. A. (2011). Tinnitus: Models and mechanisms. Hearing Research, 276(1–2), 52–60.  https://doi.org/10.1016/j.heares.2010.12.003.Google Scholar
  2. 2.
    Koch, M. (1999). The neurobiology of startle. Progress in Neurobiology, 59(2), 107–128.  https://doi.org/10.1016/S0301-0082(98)00098-7.Google Scholar
  3. 3.
    Davis, M., Antoniadis, E. A., Amaral, D. G., & Winslow, J. T. (2008). Acoustic startle reflex in rhesus monkeys: A review. Reviews in the Neurosciences, 19(2–3), 171–185.Google Scholar
  4. 4.
    Wadenberg, M.-L. G., Sills, T. L., Fletcher, P. J., & Kapur, S. (2000). Antipsychoticlike effects of amoxapine, without catalepsy, using the prepulse inhibition of the acoustic startle reflex test in rats. Biological Psychiatry, 47(7), 670–676.  https://doi.org/10.1016/S0006-3223(99)00267-X.Google Scholar
  5. 5.
    Huang, J., Wu, X., Yeomans, J., & Li, L. (2005). Opposite effects of tetanic stimulation of the auditory thalamus or auditory cortex on the acoustic startle reflex in awake rats. European Journal of Neuroscience, 21(7), 1943–1956.  https://doi.org/10.1111/j.1460-9568.2005.04030.x.Google Scholar
  6. 6.
    Li, L., & Yeomans, J. S. (2000). Using intracranial electrical stimulation to study the timing of prepulse inhibition of the startle reflex. Brain Research Protocols, 5(1), 67–74.  https://doi.org/10.1016/S1385-299X(99)00056-2.Google Scholar
  7. 7.
    Cassella, J. V., & Davis, M. (1986). The design and calibration of a startle measurement system. Physiology & Behavior, 36(2), 377–383.  https://doi.org/10.1016/0031-9384(86)90032-6.Google Scholar
  8. 8.
    Turner, J. G., & Parrish, J. (2008). Gap detection methods for assessing salicylate-induced tinnitus and hyperacusis in rats. American Journal of Audiolog, 17(2), S185–S192.  https://doi.org/10.1044/1059-0889(2008/08-0006).Google Scholar
  9. 9.
    Turner, J. G., Brozoski, T. J., Bauer, C. A., Parrish, J. L., Myers, K., Hughes, L. F., et al. (2006). Gap detection deficits in rats with tinnitus: a potential novel screening tool. Behavioral Neuroscience, 120(1), 188–195.  https://doi.org/10.1037/0735-7044.120.1.188.Google Scholar
  10. 10.
    Knipper, M., Zimmermann, U., & Muller, M. (2010). Molecular aspects of tinnitus. Hearing Research, 266(1–2), 60–69.  https://doi.org/10.1016/j.heares.2009.07.013.Google Scholar
  11. 11.
    Gai, Y., Ruhland, J. L., Yin, T. C. T., & Tollin, D. J. (2013). Behavioral and modeling studies of sound localization in cats: Effects of stimulus level and duration. Journal of Neurophysiology, 110(3), 607–620.  https://doi.org/10.1152/jn.01019.2012.Google Scholar
  12. 12.
    Berger, J. I., Coomber, B., Shackleton, T. M., Palmer, A. R., & Wallace, M. N. (2013). A novel behavioural approach to detecting tinnitus in the guinea pig. Journal of Neuroscience Methods, 213(2), 188–195.  https://doi.org/10.1016/j.jneumeth.2012.12.023.Google Scholar
  13. 13.
    McNamara, F., Wulbrand, H., & Thach, B. T. (1998). Characteristics of the infant arousal response. Journal of Applied Physiology, 85(6), 2314–2321.Google Scholar
  14. 14.
    Holand, S., Girard, A., Laude, D., Meyer-Bisch, C., & Elghozi, J. L. (1999). Effects of an auditory startle stimulus on blood pressure and heart rate in humans. Journal of Hypertension, 17(12 SUPPL.), 1893–1897.Google Scholar
  15. 15.
    Lyamin, O. I., Korneva, S. M., Rozhnov, V. V., & Mukhametov, L. M. (2016). Cardiorespiratory responses to acoustic noise in belugas. Advances in Experimental Medicine and Biology, 875, 665–672.Google Scholar
  16. 16.
    Bondarenko, E., Hodgson, D. M., & Nalivaiko, E. (2014). Prelimbic prefrontal cortex mediates respiratory responses to mild and potent prolonged, but not brief, stressors. Respiratory Physiology & Neurobiology, 204, 21–27.  https://doi.org/10.1016/j.resp.2014.07.009.Google Scholar
  17. 17.
    Kabir, M. M., Beig, M. I., Baumert, M., Trombini, M., Mastorci, F., Sgoifo, A., et al. (2010). Respiratory pattern in awake rats: Effects of motor activity and of alerting stimuli. Physiology & Behavior, 101(1), 22–31.  https://doi.org/10.1016/j.physbeh.2010.04.004.Google Scholar
  18. 18.
    Horn, B. K. P., & Schunck, B. G. (1981). Determining optical flow. Computer vision, 17, 185–203.Google Scholar
  19. 19.
    Lucas, B. D., & Kanade, T. (1981). Iterative image registration technique with an application to stereo vision. In 7th international joint conference on Artificial intelligence, Vancouver, BC (Vol. 2, pp. 674–679).Google Scholar
  20. 20.
    Barron, J. L., Fleet, D. J., & Beauchemin, S. S. (1994). Performance of optical flow techniques. International Journal of Computer Vision, 12(1), 43–77.  https://doi.org/10.1007/BF01420984.Google Scholar
  21. 21.
    Bab-Hadiashar, A., & Suter, D. (1998). Robust optic flow computation. International Journal of Computer Vision, 29(1), 59–77.Google Scholar
  22. 22.
    Farnebäck, G. (2003). Two-frame motion estimation based on polynomial expansion. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 2749, pp. 363–370).Google Scholar
  23. 23.
    Xu, Q., Hamilton, R. J., Schowengerdt, R. A., Alexander, B., & Jiang, S. B. (2008). Lung tumor tracking in fluoroscopic video based on optical flow. Medical Physics, 35(12), 5351–5359.  https://doi.org/10.1118/1.3002323.Google Scholar
  24. 24.
    Leung, K. Y. E., Danilouchkine, M. G., van Stralen, M., de Jong, N., van der Steen, A. F. W., & Bosch, J. G. (2011). Left ventricular border tracking using cardiac motion models and optical flow. Ultrasound in Medicine and Biology, 37(4), 605–616.  https://doi.org/10.1016/j.ultrasmedbio.2011.01.010.Google Scholar
  25. 25.
    Dawkins, M. S., Lee, H. J., Waitt, C. D., & Roberts, S. J. (2009). Optical flow patterns in broiler chicken flocks as automated measures of behaviour and gait. Applied Animal Behaviour Science, 119(3–4), 203–209.  https://doi.org/10.1016/j.applanim.2009.04.009.Google Scholar
  26. 26.
    Dawkins, M. S., Cain, R., & Roberts, S. J. (2012). Optical flow, flock behaviour and chicken welfare. Animal Behaviour, 84(1), 219–223.  https://doi.org/10.1016/j.anbehav.2012.04.036.Google Scholar
  27. 27.
    Stahl, A., Schellewald, C., Stavdahl, Ø., Aamo, O. M., Adde, L., & Kirkerod, H. (2012). An optical flow-based method to predict infantile cerebral palsy. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20(4), 605–614.  https://doi.org/10.1109/TNSRE.2012.2195030.Google Scholar
  28. 28.
    Boric, K., Orio, P., Viéville, T., & Whitlock, K. (2013). Quantitative analysis of cell migration using optical flow. PLoS ONE.  https://doi.org/10.1371/journal.pone.0069574.Google Scholar
  29. 29.
    Miller, K. E., Liu, X. A., & Puthanveettil, S. V. (2015). Automated measurement of fast mitochondrial transport in neurons. Frontiers in Cellular Neuroscience.  https://doi.org/10.3389/fncel.2015.00435.Google Scholar
  30. 30.
    Tills, O., Bitterli, T., Culverhouse, P., Spicer, J. I., & Rundle, S. (2013). A novel application of motion analysis for detecting stress responses in embryos at different stages of development. BMC Bioinformatics.  https://doi.org/10.1186/1471-2105-14-37.Google Scholar
  31. 31.
    Wan, I., Pokora, O., Chiu, T., Lansky, P., & Poon, P. W. (2015). Altered intensity coding in the salicylate-overdose animal model of tinnitus. BioSystems, 136, 113–119.Google Scholar
  32. 32.
    Chien-Cheng, L. (2017). OnlineResource_02.wav. figshare.  https://doi.org/10.6084/m9.figshare.5151403.v1.
  33. 33.
    Farnebäck, G. (2000). Fast and accurate motion estimation using orientation tensors and parametric motion models. Proceedings-International Conference on Pattern Recognition, 15(1), 135–139.Google Scholar
  34. 34.
    Scott, D. W. (2015). Multivariate density estimation: Theory, practice, and visualization (2nd ed.). New York: Wiley-Interscience.zbMATHGoogle Scholar
  35. 35.
    Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Snin, H. H., Zheng, Q., et al. (1998). The empirical mode decomposition and the Hubert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 454(1971), 903–995.MathSciNetzbMATHGoogle Scholar
  36. 36.
    Chien-Cheng, L. (2017). OnlineResource_07.mp4. figshare.  https://doi.org/10.6084/m9.figshare.5151466.v1.
  37. 37.
    Bures, J., Burešová, O., & Huston, J. P. (2013). Techniques and basic experiments for the study of brain and behavior. New York: Elsevier.Google Scholar
  38. 38.
    Barrett, K. E., Barman, S. M., Boitano, S., & Brooks, H. L. (2015). Ganong’s review of medical physiology. New Delhi: McGraw Hill.Google Scholar

Copyright information

© Taiwanese Society of Biomedical Engineering 2018

Authors and Affiliations

  1. 1.Department of PhysiologyNational Cheng Kung UniversityTainanTaiwan
  2. 2.Department of Electrical EngineeringFar East UniversityTainanTaiwan
  3. 3.Department of Auditory Neuroscience, Institute of Experimental MedicineThe Czech Academy of SciencesPragueCzech Republic
  4. 4.Department of Medical Biophysics and Informatics, Third Faculty of MedicineCharles University in PraguePragueCzech Republic
  5. 5.Department of Cognitive Systems and Neurosciences, Czech Institute of Informatics, Robotics and CyberneticsCzech Technical UniversityPragueCzech Republic
  6. 6.Department of Communications EngineeringYuan-Ze UniversityTaoyuanTaiwan, ROC

Personalised recommendations