Journal of Medical and Biological Engineering

, Volume 36, Issue 4, pp 506–514 | Cite as

Development and Evaluation of Novel Magnetic Actuated Microrobot with Spiral Motion Using Electromagnetic Actuation System

  • Qiang FuEmail author
  • Shuxiang GuoEmail author
  • Qiang Huang
  • Hideyuki Hirata
  • Hidenori Ishihara
Original Article


In this study, a magnetic spiral microrobot is proposed for tasks such as diagnosis, drug delivery, and minimally invasive surgery. It has a compact structure with a wireless power supply, low voltage, and a long working time. The microrobot is comprised of a spiral outer shell based on the Archimedes screw structure and an O-ring magnet for an actuator. The Archimedes screw structure produces an axial propulsive force due to the torsional moment generated by a magnetic field and embedded magnet, which rotates in the direction of interest. Microrobots with different numbers of spirals are manufactured to evaluate the effect of spiral number on speed. Moreover, we developed an electromagnetic actuation system to accomplish wireless real-time control via a Phantom Omni device. By adjusting the control signals, the microrobot achieved flexible motion in a pipe with good performance.


Magnetic spiral microrobot Electromagnetic actuation system Archimedes screw structure Wireless power supply 



This research was partly supported by the National Natural Science Foundation of China (61375094), Key Research Program of the Natural Science Foundation of Tianjin (13JCZDJC26200), National High-Tech Research and Development Program of China (2015AA043202), JSPS KAKENHI (grant 15K2120), and Kagawa University Characteristic Prior Research Fund 2015.

Supplementary material

Supplementary material 1 (AVI 5911 kb)


  1. 1.
    Yu, C., Kim, J., Choi, H., Choi, J., Jeong, S., Cha, K., et al. (2010). Novel electromagnetic actuation system for three-dimensional locomotion and drilling of intravascular microrobot. Sensors and Actuators A: Physical, 161, 297–304.CrossRefGoogle Scholar
  2. 2.
    Onogi, S., Nakajima, Y., Koyama, T., Tamura, Y., Kobayashi, E., Sakuma, I., et al. (2013). Robotic vertebral puncture system for percutaneous vertebroplasty. Journal of Medical and Biological Engineering, 33, 491–496.CrossRefGoogle Scholar
  3. 3.
    Rodríguez, A. B., Ramirez, A. R. G., Pieri, E. R. D., Lopez, A. L., & Albornoz, A. D. C. D. (2012). An approach for robot-based odor navigation. Journal of Medical and Biological Engineering, 32, 453–456.CrossRefGoogle Scholar
  4. 4.
    Pan, Q., Guo, S., & Okada, T. (2011). A novel hybrid wireless microrobot. International Journal of Mechatronics and Automation, 1, 60–69.CrossRefGoogle Scholar
  5. 5.
    Khamesee, M. B., Kato, N., Nomura, Y., & Nakamura, T. (2002). Design and control of a microrobotic system using magnetic levitation. IEEE-ASME Transactions on Mechatronics, 7, 1–14.CrossRefGoogle Scholar
  6. 6.
    Abbott, J. J., Ergeneman, O., Kummer, M., Hirt, A., & Nelson, B. J. (2007). Modeling magnetic torque and force for controlled manipulation of soft-magnetic bodies. IEEE Transactions on Robotics, 23, 1247–1251.CrossRefGoogle Scholar
  7. 7.
    Yesin, K. B., Vollmers, K., & Nelson, B. J. (2006). Modeling and control of untethered biomicrorobots in a fluidic environment using electromagnetic fields. International Journal of Robotics Research, 25, 527–536.CrossRefGoogle Scholar
  8. 8.
    Arcese, L., Fruchard, M., & Ferreira, A. (2013). Adaptive controller and observer for a magnetic microrobot. IEEE Transactions on Robotics, 29, 1060–1067.CrossRefGoogle Scholar
  9. 9.
    Fu, Q., Guo, S., & Yamauchi, Y. (2014). A control system of the wireless microrobots in pipe. In Proceedings of IEEE International Conference on Mechatronics and Automation (pp. 1995–2000)Google Scholar
  10. 10.
    Lee, J. S., Kim, B., & Hong, Y. S. (2009). A flexible chain-based screw propeller for capsule endoscopes. The International Journal of Precision Engineering and Manufacturing, 10, 27–34.CrossRefGoogle Scholar
  11. 11.
    Choi, H., Choi, J., Jeong, S., Yu, C., Park, J., & Park, S. (2009). Two dimensional locomotion of microrobot with novel stationary electromagnetic actuation system. Smart Materials and Structures, 18, 1–6.Google Scholar
  12. 12.
    Yu, M. (2002). M2A™ capsule endoscopy—A breakthrough diagnostic tool for small intestine imaging. Gastroenterology Nursing, 25, 24–27.CrossRefGoogle Scholar
  13. 13.
    Peyer, K. E., Zhang, L., & Nelson, B. J. (2013). Bio-inspired magnetic swimming microrobots for biomedical applications. Nanoscale, 5, 1259–1272.CrossRefGoogle Scholar
  14. 14.
    Kim, S. H., & Ishiyama, K. (2014). Magnetic robot and manipulation for active-locomotion with targeted drug release. IEEE-ASME Transactions on Mechatronics, 19, 1651–1659.CrossRefGoogle Scholar
  15. 15.
    Choi, K., Jang, G., Jeon, S., & Nam, J. (2014). Capsule-type magnetic microrobot actuated by an external magnetic field for selective drug delivery in human blood vessels. IEEE Transactions on Magnetics, 50, 1–4.Google Scholar
  16. 16.
    Guo, S., Fukuda, T., & Asaka, K. (2002). Fish-like underwater microrobot with 3 DOF. In Proceedings of IEEE International Conference on Robotics and Automation (pp. 738–743)Google Scholar
  17. 17.
    Guo, S., Fukuda, T., & Asaka, K. (2003). A new type of fish-like underwater microrobot. IEEE-ASME Transactions on Mechatronics, 8, 136–141.CrossRefGoogle Scholar
  18. 18.
    Moglia, A., Menciassi, A., Schurr, M. O., & Dario, P. (2007). Wireless capsule endoscopy: From diagnostic devices to multipurpose robotic systems. Biomedical Microdevices, 9, 235–243.CrossRefGoogle Scholar
  19. 19.
    Rentschler, M. E., & Oleynikov, D. (2007). Recent in vivo surgical robot and mechanism developments. Surgical Endoscopy, 21, 1477–1481.CrossRefGoogle Scholar
  20. 20.
    Gao, B., Guo, S., & Ye, X. (2011). Motion-control analysis of ICPF-actuated underwater biomimetic microrobots. International Journal of Mechatronics and Automation, 1, 79–89.CrossRefGoogle Scholar
  21. 21.
    Kim, B., Lee, S., Park, J. H., & Park, J. O. (2005). Design and fabrication of a locomotive mechanism for capsule-type endoscopes using shape memory alloys (SMAs). IEEE-ASME Transactions on Mechatronics, 10, 77–86.CrossRefGoogle Scholar
  22. 22.
    Fukuda, T., Hosokai, H., Ohyama, H., Hashimoto, H., & Arai, F. (1991). Giant magnetostrictive alloy (GMA) applications to micro mobile robot as a micro actuator without power supply cables. In Micro structures, sensors, actuators, machines and robots (pp. 210–215)Google Scholar
  23. 23.
    Honda, T., Sakashita, T., Narahashi, K., & Yamasaki, J. (2001). Swimming properties of bending-type magnetic micro-machine. Journal Magnetics Society of Japan, 4, 1175–1178.CrossRefGoogle Scholar
  24. 24.
    Mei, T., Chen, Y., Fu, G., & Kong, D. (2002). Wireless drive and control of a swimming microrobot. In Proceedings of IEEE international conference on robotics and automation (pp. 1131–1136)Google Scholar
  25. 25.
    Pan, Q., & Guo, S. (2007) Mechanism and control of a novel type of microrobot for biomedical application. In Proceedings of IEEE international conference on robotics and automation (pp. 187–192)Google Scholar
  26. 26.
    Guo, S., Pan, Q., & Khamesee, M. B. (2008). Development of a novel type of microrobot for biomedical application. Microsystem Technologies, 14, 307–314.CrossRefGoogle Scholar
  27. 27.
    Pan, Q., & Guo, S. (2009). A paddling type of microrobot in pipe. In Proceedings of IEEE international conference on robotics and automation (pp. 2995–3000)Google Scholar
  28. 28.
    Fountain, T. W. R., Kailat, P. V., & Abbott, J. J. (2010) Wireless control of magnetic helical microrobots using a rotating-permanent-magnet manipulator. In Proceedings of IEEE international conference on robotics and automation (pp. 576–581)Google Scholar
  29. 29.
    Yim, S., & Sitti, M. (2012). Design and rolling locomotion of a magnetically actuated soft capsule endoscope. IEEE Transactions on Robotics, 28, 183–193.CrossRefGoogle Scholar
  30. 30.
    Abbott, J. J., Peyer, K. E., Lagomarsino, M. C., Zhang, L., Dong, L., Kaliakatsos, I. K., et al. (2009). How should microrobots swim? International Journal of Robotics Research, 28, 1434–1447.CrossRefGoogle Scholar
  31. 31.
    Purcell, E. M. (1977). Life at low Reynolds number. American Journal of Physics, 45, 3–11.CrossRefGoogle Scholar
  32. 32.
    Brennen, C., & Winet, H. (1977). Fluid mechanics of propulsion by cilia and flagella. Annual Review of Fluid Mechanics, 9, 339–398.CrossRefzbMATHGoogle Scholar
  33. 33.
    Fu, Q., Guo, S., Yamauchi, Y., Hirata, H., & Ishihara, H. (2015). A novel hybrid microrobot using rotational magnetic field for medical applications. Biomedical Microdevices, 17, 1–12.CrossRefGoogle Scholar

Copyright information

© Taiwanese Society of Biomedical Engineering 2016

Authors and Affiliations

  1. 1.Graduate School of EngineeringKagawa UniversityTakamatsuJapan
  2. 2.Key Laboratory of Convergence Medical Engineering System and Healthcare Technology, Ministry of Industry and Information TechnologyBeijing Institute of TechnologyBeijingChina
  3. 3.Intelligent Mechanical Systems Engineering DepartmentKagawa UniversityTakamatsuJapan

Personalised recommendations