Advertisement

Carbon nanotube: Controlled synthesis determines its future

  • Shuchen Zhang (张树辰)
  • Liu Qian (钱柳)
  • Qiuchen Zhao (赵秋辰)
  • Zequn Wang (王泽群)
  • Dewu Lin (林德武)
  • Weiming Liu (刘伟铭)
  • Yabin Chen (陈亚彬)
  • Jin Zhang (张锦)Email author
Review
  • 30 Downloads

Abstract

Carbon nanotubes (CNTs) have received broad attention in the past decades due to their excellent physical and chemical properties and thus been regarded as a powerful candidate for future star-materials. Although various CNT products and their related applications have been demonstrated recently, their performance can hardly meet the researchers’ expectations compared with their theoretical properties. The current predicament is caused by the immature synthesis method, including the basic science and the producing technology. As the synthesis with controlled structures determines its future, this review summarizes the progress on the basic research and industrialization of CNTs in the past decades, including the fine structure control, aggregation status design and scale-up production, and further points out the way for the future development of CNTs combining with specific applications.

Keywords

carbon nanotubes structure-controlled synthesis scale-up synthesis applications 

碳纳米管: 可控制备决定未来

摘要

在过去几十年中, 碳纳米管由于其优异的物理和化学性质而备受关注, 被认为是一个强有力的未来明星材料. 尽管基于碳纳米管的诸多产品及应用实例相继浮现, 但是碳纳米管所呈现出的实际性质与理论值之间依然存在较大差异, 无法达到研究者的预期, 这源自于目前尚未成熟的控制制备技术. 碳纳米管的可控制备技术包括结构的精细控制方法和样品的宏量制备技术, 这在很大程度上决定了碳纳米管的未来发展前景. 基于此, 本文概述了近几十年来研究者们在碳纳米管的精细结构控制、聚合状态设计和样品宏量制备等方面的主要进展, 进一步指出了碳纳米管未来的可控制备技术必须与特定化的应用紧密结合, 以迎接即将来临的产业化时代.

Notes

Acknowledgements

This work was supported by the Ministry of Science and Technology of China (2016YFA0200101 and 2016YFA0200104), the National Natural Science Foundation of China (51432002, 21790052 and 51720105003), Beijing Municipal Science and Technology Planning Project (Z161100002116026), China Postdoctoral Science Foundation (8201400852 and 8201400892), and the National Program for Thousand Young Talents of China.

Author contributions

Zhang S, Qian L, Zhao Q, Wang Z, Lin D, Liu W, Zhang J conceived the study and organized the manuscript; Zhang J, Zhang S, Qian L, Chen Y contributed to discussion and revised the manuscript.

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354: 56–58CrossRefGoogle Scholar
  2. 2.
    Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature, 1993, 363: 603–605CrossRefGoogle Scholar
  3. 3.
    Cao Q, Rogers JA. Ultrathin films of single-walled carbon nanotubes for electronics and sensors: A review of fundamental and applied aspects. Adv Mater, 2009, 21: 29–53CrossRefGoogle Scholar
  4. 4.
    Ionescu AM, Riel H. Tunnel field-effect transistors as energy-efficient electronic switches. Nature, 2011, 479: 329–337CrossRefGoogle Scholar
  5. 5.
    Qiu C, Zhang Z, Xiao M, et al. Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science, 2017, 355: 271–276CrossRefGoogle Scholar
  6. 6.
    Avouris P, Freitag M, Perebeinos V. Carbon-nanotube photonics and optoelectronics. Nat Photon, 2008, 2: 341–350CrossRefGoogle Scholar
  7. 7.
    He X, Hartmann NF, Ma X, et al. Tunable room-temperature single-photon emission at telecom wavelengths from sp3 defects in carbon nanotubes. Nat Photon, 2017, 11: 577–582CrossRefGoogle Scholar
  8. 8.
    Shi Z, Hong X, Bechtel HA, et al. Observation of a Luttinger-liquid plasmon in metallic single-walled carbon nanotubes. Nat Photon, 2015, 9: 515–519CrossRefGoogle Scholar
  9. 9.
    Avouris P, Appenzeller J, Martel R, et al. Carbon nanotube electronics. Proc IEEE, 2003, 9: 1772–1784CrossRefGoogle Scholar
  10. 10.
    Peng B, Locascio M, Zapol P, et al. Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nat Nanotech, 2008, 3: 626–631CrossRefGoogle Scholar
  11. 11.
    Jin SH, Dunham SN, Song J, et al. Using nanoscale thermocapillary flows to create arrays of purely semiconducting singlewalled carbon nanotubes. Nat Nanotech, 2013, 8: 347–355CrossRefGoogle Scholar
  12. 12.
    Gong K, Du F, Xia Z, et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science, 2009, 323: 760–764CrossRefGoogle Scholar
  13. 13.
    Baughman RH, Zakhidov AA, de Heer WA. Carbon nanotubes—the route toward applications. Science, 2002, 297: 787–792CrossRefGoogle Scholar
  14. 14.
    De Volder MF, Tawfick SH, Baughman RH, Hart AJ. Carbon nanotubes: present and future commercial applications. Science, 2013, 339: 535–539CrossRefGoogle Scholar
  15. 15.
    Chen Y, Zhang J. Chemical vapor deposition growth of singlewalled carbon nanotubes with controlled structures for nanodevice applications. Acc Chem Res, 2014, 47: 2273–2281CrossRefGoogle Scholar
  16. 16.
    Chen Y, Zhang Y, Hu Y, et al. State of the art of single-walled carbon nanotube synthesis on surfaces. Adv Mater, 2014, 26: 5898–5922CrossRefGoogle Scholar
  17. 17.
    Zhang R, Zhang Y, Wei F. Controlled synthesis of ultralong carbon nanotubes with perfect structures and extraordinary properties. Acc Chem Res, 2017, 50: 179–189CrossRefGoogle Scholar
  18. 18.
    Zhang X, Jiang K, Feng C, et al. Spinning and processing continuous yarns from 4-inch wafer scale super-aligned carbon nanotube arrays. Adv Mater, 2006, 18: 1505–1510CrossRefGoogle Scholar
  19. 19.
    Wang Y, Wei F, Luo G, et al. The large-scale production of carbon nanotubes in a nano-agglomerate fluidized-bed reactor. Chem Phys Lett, 2002, 364: 568–572CrossRefGoogle Scholar
  20. 20.
    Gui X, Wei J, Wang K, et al. Carbon nanotube sponges. Adv Mater, 2010, 22: 617–621CrossRefGoogle Scholar
  21. 21.
    Penev ES, Artyukhov VI, Yakobson BI. Extensive energy landscape sampling of nanotube end-caps reveals no chiral-angle bias for their nucleation. ACS Nano, 2014, 8: 1899–1906CrossRefGoogle Scholar
  22. 22.
    Yao Y, Feng C, Zhang J, et al. “Cloning” of single-walled carbon nanotubes via open-end growth mechanism. Nano Lett, 2009, 9: 1673–1677CrossRefGoogle Scholar
  23. 23.
    Zhang R, Zhang Y, Zhang Q, et al. Growth of half-meter long carbon nanotubes based on Schulz-Flory distribution. ACS Nano, 2013, 7: 6156–6161CrossRefGoogle Scholar
  24. 24.
    Dresselhaus MS, Dresselhaus G, Saito R. Physics of carbon nanotubes. Carbon, 1995, 33: 883–891CrossRefGoogle Scholar
  25. 25.
    Wei BQ, Vajtai R, Ajayan PM. Reliability and current carrying capacity of carbon nanotubes. Appl Phys Lett, 2001, 79: 1172–1174CrossRefGoogle Scholar
  26. 26.
    Chou TW, Gao L, Thostenson ET, et al. An assessment of the science and technology of carbon nanotube-based fibers and composites. Compos Sci Tech, 2010, 70: 1–19CrossRefGoogle Scholar
  27. 27.
    Franklin AD. Nanomaterials in transistors: From high-performance to thin-film applications. Science, 2015, 349: aab2750CrossRefGoogle Scholar
  28. 28.
    Skákalová V, Dettlaff-Weglikowska U, Roth S. Electrical and mechanical properties of nanocomposites of single wall carbon nanotubes with PMMA. Synth Met, 2005, 152: 349–352CrossRefGoogle Scholar
  29. 29.
    Koerner H, Liu W, Alexander M, et al. Deformation-morphology correlations in electrically conductive carbon nanotube—ther-moplastic polyurethane nanocomposites. Polymer, 2005, 46: 4405–4420CrossRefGoogle Scholar
  30. 30.
    Tans SJ, Verschueren ARM, Dekker C. Room-temperature transistor based on a single carbon nanotube. Nature, 1998, 393: 49–52CrossRefGoogle Scholar
  31. 31.
    Appenzeller J, Lin YM, Knoch J, et al. Band-to-band tunneling in carbon nanotube field-effect transistors. Phys Rev Lett, 2004, 93: 196805CrossRefGoogle Scholar
  32. 32.
    Franklin AD, Luisier M, Han SJ, et al. Sub-10 nm carbon nanotube transistor. Nano Lett, 2012, 12: 758–762CrossRefGoogle Scholar
  33. 33.
    Sun DM, Timmermans MY, Tian Y, et al. Flexible high-performance carbon nanotube integrated circuits. Nat Nanotech, 2011, 6: 156–161CrossRefGoogle Scholar
  34. 34.
    LeMieux MC, Roberts M, Barman S, et al. Self-sorted, aligned nanotube networks for thin-film transistors. Science, 2008, 321: 101–104CrossRefGoogle Scholar
  35. 35.
    Kim P, Shi L, Majumdar A, et al. Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett, 2001, 87: 215502CrossRefGoogle Scholar
  36. 36.
    Balandin AA, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene. Nano Lett, 2008, 8: 902–907CrossRefGoogle Scholar
  37. 37.
    Han Z, Fina A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Prog Polym Sci, 2011, 36: 914–944CrossRefGoogle Scholar
  38. 38.
    Mazov IN, Ilinykh IA, Kuznetsov VL, et al. Thermal conductivity of polypropylene-based composites with multiwall carbon nanotubes with different diameter and morphology. J Alloys Compd, 2014, 586: S440–S442CrossRefGoogle Scholar
  39. 39.
    Biercuk MJ, Llaguno MC, Radosavljevic M, et al. Carbon nanotube composites for thermal management. Appl Phys Lett, 2002, 80: 2767–2769CrossRefGoogle Scholar
  40. 40.
    Kam NWS, O’Connell M, Wisdom JA, et al. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci USA, 2005, 102: 11600–11605CrossRefGoogle Scholar
  41. 41.
    de la Zerda A, Zavaleta C, Keren S, et al. Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat Nanotech, 2008, 3: 557–562CrossRefGoogle Scholar
  42. 42.
    Heller DA, Baik S, Eurell TE, et al. Single-walled carbon nanotube spectroscopy in live cells: Towards long-term labels and optical sensors. Adv Mater, 2005, 17: 2793–2799CrossRefGoogle Scholar
  43. 43.
    Gao G, Vecitis CD. Electrochemical carbon nanotube filter oxidative performance as a function of surface chemistry. Environ Sci Technol, 2011, 45: 9726–9734CrossRefGoogle Scholar
  44. 44.
    Rahaman MS, Vecitis CD, Elimelech M. Electrochemical carbonnanotube filter performance toward virus removal and inactivation in the presence of natural organic matter. Environ Sci Technol, 2012, 46: 1556–1564CrossRefGoogle Scholar
  45. 45.
    Corry B. Designing carbon nanotube membranes for efficient water desalination. J Phys Chem B, 2008, 112: 1427–1434CrossRefGoogle Scholar
  46. 46.
    Charlier JC. Defects in carbon nanotubes. Acc Chem Res, 2002, 35: 1063–1069CrossRefGoogle Scholar
  47. 47.
    Li X, Zhang L, Wang X, et al. Langmuir-Blodgett assembly of densely aligned single-walled carbon nanotubes from bulk materials. J Am Chem Soc, 2007, 129: 4890–4891CrossRefGoogle Scholar
  48. 48.
    Cao Q, Han SJ, Tulevski GS, et al. Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics. Nat Nanotech, 2013, 8: 180–186CrossRefGoogle Scholar
  49. 49.
    Wang C, Zhang J, Ryu K, et al. Wafer-scale fabrication of separated carbon nanotube thin-film transistors for display applications. Nano Lett, 2009, 9: 4285–4291CrossRefGoogle Scholar
  50. 50.
    Koziol K, Vilatela J, Moisala A, et al. High-performance carbon nanotube fiber. Science, 2007, 318: 1892–1895CrossRefGoogle Scholar
  51. 51.
    Wu Z, Chen Z, Du X, et al. Transparent, conductive carbon nanotube films. Science, 2004, 305: 1273–1276CrossRefGoogle Scholar
  52. 52.
    Xu YQ, Flor E, Kim MJ, et al. Vertical array growth of small diameter single-walled carbon nanotubes. J Am Chem Soc, 2006, 128: 6560–6561CrossRefGoogle Scholar
  53. 53.
    Cheung CL, Kurtz A, Park H, et al. Diameter-controlled synthesis of carbon nanotubes. J Phys Chem B, 2002, 106: 2429–2433CrossRefGoogle Scholar
  54. 54.
    He M, Magnin Y, Amara H, et al. Linking growth mode to lengths of single-walled carbon nanotubes. Carbon, 2017, 113: 231–236CrossRefGoogle Scholar
  55. 55.
    Gohier A, Ewels CP, Minea TM, et al. Carbon nanotube growth mechanism switches from tip- to base-growth with decreasing catalyst particle size. Carbon, 2008, 46: 1331–1338CrossRefGoogle Scholar
  56. 56.
    Wirth CT, Bayer BC, Gamalski AD, et al. The phase of iron catalyst nanoparticles during carbon nanotube growth. Chem Mater, 2012, 24: 4633–4640CrossRefGoogle Scholar
  57. 57.
    He M, Jiang H, Kauppinen EI, et al. Diameter and chiral angle distribution dependencies on the carbon precursors in surface-grown single-walled carbon nanotubes. Nanoscale, 2012, 4: 7394–7398CrossRefGoogle Scholar
  58. 58.
    Tian Y, Timmermans MY, Kivistö S, et al. Tailoring the diameter of single-walled carbon nanotubes for optical applications. Nano Res, 2011, 4: 807–815CrossRefGoogle Scholar
  59. 59.
    Hata K, Futaba DN, Mizuno K, et al. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science, 2004, 306: 1362–1364CrossRefGoogle Scholar
  60. 60.
    Hayashi T, Kim YA, Matoba T, et al. Smallest freestanding singlewalled carbon nanotube. Nano Lett, 2003, 3: 887–889CrossRefGoogle Scholar
  61. 61.
    Li Y, Kim W, Zhang Y, et al. Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes. J Phys Chem B, 2001, 105: 11424–11431CrossRefGoogle Scholar
  62. 62.
    An L, Owens JM, McNeil LE, et al. Synthesis of nearly uniform single-walled carbon nanotubes using identical metal-containing molecular nanoclusters as catalysts. J Am Chem Soc, 2002, 124: 13688–13689CrossRefGoogle Scholar
  63. 63.
    Kukovitsky EF, L’vov SG, Sainov NA. VLS-growth of carbon nanotubes from the vapor. Chem Phys Lett, 2000, 317: 65–70CrossRefGoogle Scholar
  64. 64.
    Kang L, Hu Y, Liu L, et al. Growth of close-packed semiconducting single-walled carbon nanotube arrays using oxygen-deficient TiO2 nanoparticles as catalysts. Nano Lett, 2015, 15: 403–409CrossRefGoogle Scholar
  65. 65.
    Yang F, Wang X, Zhang D, et al. Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature, 2014, 510: 522–524CrossRefGoogle Scholar
  66. 66.
    Zhang S, Tong L, Hu Y, et al. Diameter-specific growth of semiconducting SWNT arrays using uniform Mo2C solid catalyst. J Am Chem Soc, 2015, 137: 8904–8907CrossRefGoogle Scholar
  67. 67.
    Huang S, Woodson M, Smalley RE, et al. Growth mechanism of oriented long single walled carbon nanotubes using “fast-heating” chemical vapor deposition process. Nano Lett, 2004, 4: 1025–1028CrossRefGoogle Scholar
  68. 68.
    Smalley RE, Li Y, Moore VC, et al. Single wall carbon nanotube amplification: En route to a type-specific growth mechanism. J Am Chem Soc, 2006, 128: 15824–15829CrossRefGoogle Scholar
  69. 69.
    Liu J, Wang C, Tu X, et al. Chirality-controlled synthesis of single-wall carbon nanotubes using vapour-phase epitaxy. Nat Commun, 2012, 3: 1199CrossRefGoogle Scholar
  70. 70.
    Zhang S, Kang L, Wang X, et al. Arrays of horizontal carbon nanotubes of controlled chirality grown using designed catalysts. Nature, 2017, 543: 234–238CrossRefGoogle Scholar
  71. 71.
    Zhang S, Tong L, Zhang J. The road to chirality-specific growth of single-walled carbon nanotubes. Natl Sci Rev, 2017, 5: 310–312CrossRefGoogle Scholar
  72. 72.
    Zhang S, Wang X, Yao F, et al. Controllable growth of (n, n−1) family of semiconducting carbon nanotubes. Chem, 2019, 5: 1182–1193CrossRefGoogle Scholar
  73. 73.
    Magnin Y, Amara H, Ducastelle F, et al. Entropy-driven stability of chiral single-walled carbon nanotubes. Science, 2018, 362: 212–215CrossRefGoogle Scholar
  74. 74.
    Ding F, Harutyunyan AR, Yakobson BI. Dislocation theory of chirality-controlled nanotube growth. Proc Natl Acad Sci USA, 2009, 106: 2506–2509CrossRefGoogle Scholar
  75. 75.
    Artyukhov VI, Penev ES, Yakobson BI. Why nanotubes grow chiral. Nat Commun, 2014, 5: 4892CrossRefGoogle Scholar
  76. 76.
    Yuan Q, Xu Z, Yakobson BI, et al. Efficient defect healing in catalytic carbon nanotube growth. Phys Rev Lett, 2012, 108: 245505CrossRefGoogle Scholar
  77. 77.
    Hu Y, Kang L, Zhao Q, et al. Growth of high-density horizontally aligned SWNT arrays using Trojan catalysts. Nat Commun, 2015, 6: 6099CrossRefGoogle Scholar
  78. 78.
    Bedewy M, Meshot ER, Guo H, et al. Collective mechanism for the evolution and self-termination of vertically aligned carbon nanotube growth. J Phys Chem C, 2009, 113: 20576–20582CrossRefGoogle Scholar
  79. 79.
    Terrones M, Ajayan PM, Banhart F, et al. N-doping and coalescence of carbon nanotubes: Synthesis and electronic properties. Appl Phys A-Mater Sci Processing, 2002, 74: 355–361CrossRefGoogle Scholar
  80. 80.
    Goyanes S, Rubiolo GR, Salazar A, et al. Carboxylation treatment of multiwalled carbon nanotubes monitored by infrared and ultraviolet spectroscopies and scanning probe microscopy. Diamond Related Mater, 2007, 16: 412–417CrossRefGoogle Scholar
  81. 81.
    Kosynkin DV, Higginbotham AL, Sinitskii A, et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature, 2009, 458: 872–876CrossRefGoogle Scholar
  82. 82.
    Gojny FH, Wichmann MHG, Köpke U, et al. Carbon nanotube-reinforced epoxy-composites: Enhanced stiffness and fracture toughness at low nanotube content. Compos Sci Tech, 2004, 64: 2363–2371CrossRefGoogle Scholar
  83. 83.
    Kuznetsov AA, Fonseca AF, Baughman RH, et al. Structural model for dry-drawing of sheets and yarns from carbon nanotube forests. ACS Nano, 2011, 5: 985–993CrossRefGoogle Scholar
  84. 84.
    Behabtu N, Young CC, Tsentalovich DE, et al. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science, 2013, 339: 182–186CrossRefGoogle Scholar
  85. 85.
    Bai Y, Zhang R, Ye X, et al. Carbon nanotube bundles with tensile strength over 80 GPa. Nat Nanotech, 2018, 13: 589–595CrossRefGoogle Scholar
  86. 86.
    Ding L, Tselev A, Wang J, et al. Selective growth of well-aligned semiconducting single-walled carbon nanotubes. Nano Lett, 2009, 9: 800–805CrossRefGoogle Scholar
  87. 87.
    Che Y, Wang C, Liu J, et al. Selective synthesis and device applications of semiconducting single-walled carbon nanotubes using isopropyl alcohol as feedstock. ACS Nano, 2012, 6: 7454–7462CrossRefGoogle Scholar
  88. 88.
    Kang L, Zhang S, Li Q, et al. Growth of horizontal semiconducting SWNT arrays with density higher than 100 tubes/µm using ethanol/methane chemical vapor deposition. J Am Chem Soc, 2016, 138: 6727–6730CrossRefGoogle Scholar
  89. 89.
    Zhang S, Hu Y, Wu J, et al. Selective scission of C-O and C-C bonds in ethanol using bimetal catalysts for the preferential growth of semiconducting SWNT arrays. J Am Chem Soc, 2015, 137: 1012–1015CrossRefGoogle Scholar
  90. 90.
    Hong G, Zhou M, Zhang R, et al. Separation of metallic and semiconducting single-walled carbon nanotube arrays by “scotch tape”. Angew Chem Int Ed, 2011, 50: 6819–6823CrossRefGoogle Scholar
  91. 91.
    Du F, Felts JR, Xie X, et al. Laser-induced nanoscale thermocapillary flow for purification of aligned arrays of single-walled carbon nanotubes. ACS Nano, 2014, 8: 12641–12649CrossRefGoogle Scholar
  92. 92.
    Hu Y, Chen Y, Li P, et al. Sorting out semiconducting singlewalled carbon nanotube arrays by washing off metallic tubes using SDS aqueous solution. Small, 2013, 9: 1306–1311CrossRefGoogle Scholar
  93. 93.
    Zhang G, Qi P, Wang X, et al. Selective etching of metallic carbon nanotubes by gas-phase reaction. Science, 2006, 314: 974–977CrossRefGoogle Scholar
  94. 94.
    Maehashi K, Ohno Y, Inoue K, et al. Chirality selection of singlewalled carbon nanotubes by laser resonance chirality selection method. Appl Phys Lett, 2004, 85: 858–860CrossRefGoogle Scholar
  95. 95.
    Hong G, Zhang B, Peng B, et al. Direct growth of semiconducting single-walled carbon nanotube array. J Am Chem Soc, 2009, 131: 14642–14643CrossRefGoogle Scholar
  96. 96.
    Arnold MS, Green AA, Hulvat JF, et al. Sorting carbon nanotubes by electronic structure using density differentiation. Nat Nanotech, 2006, 1: 60–65CrossRefGoogle Scholar
  97. 97.
    Liu H, Nishide D, Tanaka T, et al. Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nat Commun, 2011, 2: 309CrossRefGoogle Scholar
  98. 98.
    Khripin CY, Fagan JA, Zheng M. Spontaneous partition of carbon nanotubes in polymer-modified aqueous phases. J Am Chem Soc, 2013, 135: 6822–6825CrossRefGoogle Scholar
  99. 99.
    Collins PG, Arnold MS, Avouris P. Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science, 2001, 292: 706–709CrossRefGoogle Scholar
  100. 100.
    Wang J, Jin X, Liu Z, et al. Growing highly pure semiconducting carbon nanotubes by electrotwisting the helicity. Nat Catal, 2018, 1: 326–331CrossRefGoogle Scholar
  101. 101.
    Franklin AD. The road to carbon nanotube transistors. Nature, 2013, 498: 443–444CrossRefGoogle Scholar
  102. 102.
    Nish A, Hwang JY, Doig J, et al. Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. Nat Nanotech, 2007, 2: 640–646CrossRefGoogle Scholar
  103. 103.
    Zheng M, Jagota A, Semke ED, et al. DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater, 2003, 2: 338–342CrossRefGoogle Scholar
  104. 104.
    Zhang F, Hou PX, Liu C, et al. Growth of semiconducting singlewall carbon nanotubes with a narrow band-gap distribution. Nat Commun, 2016, 7: 11160CrossRefGoogle Scholar
  105. 105.
    Shulaker MM, Hills G, Patil N, et al. Carbon nanotube computer. Nature, 2013, 501: 526–530CrossRefGoogle Scholar
  106. 106.
    Qiu C, Liu F, Xu L, et al. Dirac-source field-effect transistors as energy-efficient, high-performance electronic switches. Science, 2018, 361: 387–392CrossRefGoogle Scholar
  107. 107.
    Sotowa C, Origi G, Takeuchi M, et al. The reinforcing effect of combined carbon nanotubes and acetylene blacks on the positive electrode of lithium-ion batteries. ChemSusChem, 2008, 1: 911–915CrossRefGoogle Scholar
  108. 108.
    An KH, Kim WS, Park YS, et al. Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes. Adv Funct Mater, 2001, 11: 387–392CrossRefGoogle Scholar
  109. 109.
    Niu C, Sichel EK, Hoch R, et al. High power electrochemical capacitors based on carbon nanotube electrodes. Appl Phys Lett, 1997, 70: 1480–1482CrossRefGoogle Scholar
  110. 110.
    Nardecchia S, Carriazo D, Ferrer ML, et al. Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: Synthesis and applications. Chem Soc Rev, 2013, 42: 794–830CrossRefGoogle Scholar
  111. 111.
    Zhang X, Cao A, Li Y, et al. Self-organized arrays of carbon nanotube ropes. Chem Phys Lett, 2002, 351: 183–188CrossRefGoogle Scholar
  112. 112.
    Zhang X, Li Q, Holesinger T, et al. Ultrastrong, stiff, and lightweight carbon-nanotube fibers. Adv Mater, 2007, 19: 4198–4201CrossRefGoogle Scholar
  113. 113.
    Li J, Hu L, Wang L, et al. Organic light-emitting diodes having carbon nanotube anodes. Nano Lett, 2006, 6: 2472–2477CrossRefGoogle Scholar
  114. 114.
    Li Z, Xu J, O’Byrne JP, et al. Freestanding bucky paper with high strength from multi-wall carbon nanotubes. Mater Chem Phys, 2012, 135: 921–927CrossRefGoogle Scholar
  115. 115.
    Zheng L, Zhang X, Li Q, et al. Carbon-nanotube cotton for largescale fibers. Adv Mater, 2007, 19: 2567–2570CrossRefGoogle Scholar
  116. 116.
    Fan S, Chapline MG, Franklin NR, et al. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science, 1999, 283: 512–514CrossRefGoogle Scholar
  117. 117.
    Du R, Wu J, Chen L, et al. Hierarchical hydrogen bonds directed multi-functional carbon nanotube-based supramolecular hydrogels. Small, 2014, 10: 1387–1393CrossRefGoogle Scholar
  118. 118.
    Pal A, Chhikara BS, Govindaraj A, et al. Synthesis and properties of novel nanocomposites made of single-walled carbon nanotubes and low molecular mass organogels and their thermo-responsive behavior triggered by near IR radiation. J Mater Chem, 2008, 18: 2593–2600CrossRefGoogle Scholar
  119. 119.
    Zou J, Liu J, Karakoti AS, et al. Ultralight multiwalled carbon nanotube aerogel. ACS Nano, 2010, 4: 7293–7302CrossRefGoogle Scholar
  120. 120.
    Yadav MD, Dasgupta K, Patwardhan AW, et al. High performance fibers from carbon nanotubes: Synthesis, characterization, and applications in composites—a review. Ind Eng Chem Res, 2017, 56: 12407–12437CrossRefGoogle Scholar
  121. 121.
    Reguero V, Alemán B, Mas B, et al. Controlling carbon nanotube type in macroscopic fibers synthesized by the direct spinning process. Chem Mater, 2014, 26: 3550–3557CrossRefGoogle Scholar
  122. 122.
    Motta M, Moisala A, Kinloch I, et al. High performance fibres from ‘dog bone’ carbon nanotubes. Adv Mater, 2007, 19: 3721–3726CrossRefGoogle Scholar
  123. 123.
    Li Q, Zhang X, DePaula R, et al. Sustained growth of ultralong carbon nanotube arrays for fiber spinning. Adv Mater, 2006, 18: 3160–3163CrossRefGoogle Scholar
  124. 124.
    Alvarez NT, Miller P, Haase M, et al. Carbon nanotube assembly at near-industrial natural-fiber spinning rates. Carbon, 2015, 86: 350–357CrossRefGoogle Scholar
  125. 125.
    Barisci J, Tahhan M, Wallace G, et al. Properties of carbon nanotube fibers spun from DNA-stabilized dispersions. Adv Funct Mater, 2004, 14: 133–138CrossRefGoogle Scholar
  126. 126.
    Razal J, Gilmore K, Wallace G. Carbon nanotube biofiber formation in a polymer-free coagulation bath. Adv Funct Mater, 2008, 18: 61–66CrossRefGoogle Scholar
  127. 127.
    Zhang M, Atkinson KR, Baughman RH. Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science, 2004, 306: 1358–1361CrossRefGoogle Scholar
  128. 128.
    Zhao H, Zhang Y, Bradford PD, et al. Carbon nanotube yarn strain sensors. Nanotechnology, 2010, 21: 305502CrossRefGoogle Scholar
  129. 129.
    Lekawa-Raus A, Patmore J, Kurzepa L, et al. Electrical properties of carbon nanotube based fibers and their future use in electrical wiring. Adv Funct Mater, 2014, 24: 3661–3682CrossRefGoogle Scholar
  130. 130.
    Edwards SL, Church JS, Werkmeister JA, et al. Tubular micro-scale multiwalled carbon nanotube-based scaffolds for tissue engineering. Biomaterials, 2009, 30: 1725–1731CrossRefGoogle Scholar
  131. 131.
    Kakade BA, Pillai VK, Late DJ, et al. High current density, low threshold field emission from functionalized carbon nanotube bucky paper. Appl Phys Lett, 2010, 97: 073102CrossRefGoogle Scholar
  132. 132.
    Jiang S, Hou PX, Chen ML, et al. Ultrahigh-performance transparent conductive films of carbon-welded isolated single-wall carbon nanotubes. Sci Adv, 2018, 4: eaap9264CrossRefGoogle Scholar
  133. 133.
    Yu LP, Shearer C, Shapter J. Recent development of carbon nanotube transparent conductive films. Chem Rev, 2016, 116: 13413–13453CrossRefGoogle Scholar
  134. 134.
    Kim Y, Minami N, Zhu W, et al. Langmuir-Blodgett films of single-wall carbon nanotubes: Layer-by-layer deposition and inplane orientation of tubes. Jpn J Appl Phys, 2003, 42: 7629–7634CrossRefGoogle Scholar
  135. 135.
    El-Aguizy T, Kim SG. Large-scale assembly of carbon nanotubes. ASME 2004 3rd Integrated Nanosystems Conference, Pasadena, USA, 2004, 97–98Google Scholar
  136. 136.
    Saran N, Parikh K, Suh DS, et al. Fabrication and characterization of thin films of single-walled carbon nanotube bundles on flexible plastic substrates. J Am Chem Soc, 2004, 126: 4462–4463CrossRefGoogle Scholar
  137. 137.
    Hu L, Gruner G, Jenkins J, et al. Flash dry deposition of nanoscale material thin films. J Mater Chem, 2009, 19: 5845–5849CrossRefGoogle Scholar
  138. 138.
    Kamat PV, Thomas KG, Barazzouk S, et al. Self-assembled linear bundles of single wall carbon nanotubes and their alignment and deposition as a film in a DC field. J Am Chem Soc, 2004, 126: 10757–10762CrossRefGoogle Scholar
  139. 139.
    Park S, Pitner G, Giri G, et al. Large-area assembly of densely aligned single-walled carbon nanotubes using solution shearing and their application to field-effect transistors. Adv Mater, 2015, 27: 2656–2662CrossRefGoogle Scholar
  140. 140.
    Hussain A, Liao Y, Zhang Q, et al. Floating catalyst CVD synthesis of single walled carbon nanotubes from ethylene for high performance transparent electrodes. Nanoscale, 2018, 10: 9752–9759CrossRefGoogle Scholar
  141. 141.
    Feng C, Liu K, Wu JS, et al. Flexible, stretchable, transparent conducting films made from superaligned carbon nanotubes. Adv Funct Mater, 2010, 20: 885–891CrossRefGoogle Scholar
  142. 142.
    Snow ES, Perkins FK, Houser EJ, et al. Chemical detection with a single-walled carbon nanotube capacitor. Science, 2005, 307: 1942–1945CrossRefGoogle Scholar
  143. 143.
    Zhou J, Xu X, Yu H, et al. Deformable and wearable carbon nanotube microwire-based sensors for ultrasensitive monitoring of strain, pressure and torsion. Nanoscale, 2017, 9: 604–612CrossRefGoogle Scholar
  144. 144.
    Ren L, Pint CL, Booshehri LG, et al. Carbon nanotube terahertz polarizer. Nano Lett, 2009, 9: 2610–2613CrossRefGoogle Scholar
  145. 145.
    Lee B, Baek Y, Lee M, et al. A carbon nanotube wall membrane for water treatment. Nat Commun, 2015, 6: 7109CrossRefGoogle Scholar
  146. 146.
    Cho W, Schulz M, Shanov V. Growth and characterization of vertically aligned centimeter long CNT arrays. Carbon, 2014, 72: 264–273CrossRefGoogle Scholar
  147. 147.
    Chen J, Xue C, Ramasubramaniam R, et al. A new method for the preparation of stable carbon nanotube organogels. Carbon, 2006, 44: 2142–2146CrossRefGoogle Scholar
  148. 148.
    Kohlmeyer RR, Lor M, Deng J, et al. Preparation of stable carbon nanotube aerogels with high electrical conductivity and porosity. Carbon, 2011, 49: 2352–2361CrossRefGoogle Scholar
  149. 149.
    Bryning M, Milkie D, Islam M, et al. Carbon nanotube aerogels. Adv Mater, 2007, 19: 661–664CrossRefGoogle Scholar
  150. 150.
    Gui X, Cao A, Wei J, et al. Soft, highly conductive nanotube sponges and composites with controlled compressibility. ACS Nano, 2010, 4: 2320–2326CrossRefGoogle Scholar
  151. 151.
    Chen X, Zhu H, Chen YC, et al. MWCNT/V2O5 core/shell sponge for high areal capacity and power density Li-ion cathodes. ACS Nano, 2012, 6: 7948–7955CrossRefGoogle Scholar
  152. 152.
    Zhang Q, Huang JQ, Qian WZ, et al. The road for nanomaterials industry: A review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage. Small, 2013, 9: 1237–1265CrossRefGoogle Scholar
  153. 153.
    Zhang Q, Huang JQ, Zhao MQ, et al. Carbon nanotube mass production: Principles and processes. ChemSusChem, 2011, 4: 864–889CrossRefGoogle Scholar
  154. 154.
    Moisala A, Nasibulin AG, Brown DP, et al. Single-walled carbon nanotube synthesis using ferrocene and iron pentacarbonyl in a laminar flow reactor. Chem Eng Sci, 2006, 61: 4393–4402CrossRefGoogle Scholar
  155. 155.
    Tian Y, Timmermans MY, Partanen M, et al. Growth of singlewalled carbon nanotubes with controlled diameters and lengths by an aerosol method. Carbon, 2011, 49: 4636–4643CrossRefGoogle Scholar
  156. 156.
    Laiho P, Mustonen K, Ohno Y, et al. Dry and direct deposition of aerosol-synthesized single-walled carbon nanotubes by thermophoresis. ACS Appl Mater Interfaces, 2017, 9: 20738–20747CrossRefGoogle Scholar
  157. 157.
    Wang BW, Jiang S, Zhu QB, et al. Continuous fabrication of meter-scale single-wall carbon nanotube films and their use in flexible and transparent integrated circuits. Adv Mater, 2018, 30: 1802057CrossRefGoogle Scholar
  158. 158.
    Kaskela A, Nasibulin AG, Timmermans MY, et al. Aerosol-synthesized SWCNT networks with tunable conductivity and transparency by a dry transfer technique. Nano Lett, 2010, 10: 4349–4355CrossRefGoogle Scholar
  159. 159.
    See CH, Harris AT. A review of carbon nanotube synthesis via fluidized-bed chemical vapor deposition. Ind Eng Chem Res, 2007, 46: 997–1012CrossRefGoogle Scholar
  160. 160.
    Geldart D. Types of gas fluidization. Powder Tech, 1973, 7: 285–292CrossRefGoogle Scholar
  161. 161.
    Zhao MQ, Zhang Q, Huang JQ, et al. Layered double hydroxides as catalysts for the efficient growth of high quality single-walled carbon nanotubes in a fluidized bed reactor. Carbon, 2010, 48: 3260–3270CrossRefGoogle Scholar
  162. 162.
    Singh C, Shaffer MSP, Koziol KKK, et al. Towards the production of large-scale aligned carbon nanotubes. Chem Phys Lett, 2003, 372: 860–865CrossRefGoogle Scholar
  163. 163.
    Zhang Q, Huang JQ, Zhao MQ, et al. Radial growth of vertically aligned carbon nanotube arrays from ethylene on ceramic spheres. Carbon, 2008, 46: 1152–1158CrossRefGoogle Scholar
  164. 164.
    Qian H, Greenhalgh ES, Shaffer MSP, et al. Carbon nanotube-based hierarchical composites: A review. J Mater Chem, 2010, 20: 4751–4762CrossRefGoogle Scholar
  165. 165.
    Jia X, Wei F. Advances in production and applications of carbon nanotubes. Top Curr Chem (Z), 2017, 375: 18CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Shuchen Zhang (张树辰)
    • 1
  • Liu Qian (钱柳)
    • 1
  • Qiuchen Zhao (赵秋辰)
    • 1
  • Zequn Wang (王泽群)
    • 1
  • Dewu Lin (林德武)
    • 1
  • Weiming Liu (刘伟铭)
    • 1
  • Yabin Chen (陈亚彬)
    • 2
  • Jin Zhang (张锦)
    • 1
    Email author
  1. 1.Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
  2. 2.School of Aerospace EngineeringBeijing Institute of TechnologyBeijingChina

Personalised recommendations