Lightweight hydrides nanocomposites for hydrogen storage: Challenges, progress and prospects

  • Li Li (李丽)Email author
  • Yike Huang (黄一可)
  • Cuihua An (安翠华)
  • Yijing Wang (王一菁)Email author
Reviews SPECIAL ISSUE: Celebrating the 100th anniversary of Nankai University


As typical high-capacity complex hydrides, lightweight hydrides have attracted intensive attention due to their high gravimetric and volumetric energy densities of hydrogen storage. However, lightweight hydrides also have high thermodynamic stability and poor kinetics, so they ususally require high hydrogen desorption temperature and show inferior reversibility under mild conditions. This review summarizes recent progresses on the endeavor of overcoming thermodynamic and kinetic challenges for Mg based hydrides, lightweight metal borohydrides and alanates. First, the current state, advantages and challenges for Mg-based hydrides and lightweight metal hydrides are introduced. Then, alloying, nanoscaling and appropriate doping techniques are demonstrated to decrease the hydrogen desorption temperature and promote the reversibility behavior in lightweight hydrides. Selected scaffolds materials, approaches for synthesis of nanoconfined systems and hydriding-dehydriding properties are reviewed. In addition, the evolution of various dopants and their effects on the hydrogen storage properties of lightweight hydrides are investigated, and the relevant catalytic mechanisms are summarized. Finally, the remaining challenges and the sustainable research efforts are discussed.


hydrogen storage Mg-based materials borohydrides alanates nanoscaling 

轻质氢化物储氢材料: 挑战, 进展和展望


在众多的储氢材料中, 轻质储氢材料由于具有极高的质量比 容量和体积比容量而受到广泛的关注. 然而, 热力学稳定性高、动 力学性能差等因素, 使得轻质储氢材料存在放氢温度高、可逆性 差等缺点, 限制了其实际应用. 本文总结了几种调控轻质储氢材料 热力学、动力学性能的方法, 着重介绍了镁基储氢材料、硼氢配 位氢化物和铝氢配位氢化物的研究进展. 首先总结了轻质储氢材 料的研究现状、优势与挑战, 接着举例分析了合金、纳米化与添 加掺杂剂策略的优缺点, 对放氢温度与材料吸放氢可逆性的影响, 系统归纳了不同的基体、添加剂、制备方法和对应的吸放氢性能 数据. 最后, 详细讨论了掺杂剂、合成方法和调控策略的演变及发 展趋势, 以及改善热力学、动力学行为的机理, 并对未来的研究方 向进行了展望.



This work was supported by the National Key R&D Program of China (2018YFB1502102), the National Natural Science Foundation of China (51571124, 51571125, 51871123 and 51501072), 111 Project (B12015) and MOE (IRT13R30).

Author contributions

Li L and Huang Y wrote the manuscript; An C and Wang Y developed the concept and revised the manuscript. All authors participated in the general discussion.


  1. 1.
    Züttel A. Materials for hydrogen storage. Mater Today, 2003, 6: 24–33CrossRefGoogle Scholar
  2. 2.
    Li J, Li B, Shao H, et al. Catalysis and downsizing in Mg-based hydrogen storage materials. Catalysts, 2018, 8: 89CrossRefGoogle Scholar
  3. 3.
    Sreedhar I, Kamani KM, Kamani BM, et al. A Bird’s eye view on process and engineering aspects of hydrogen storage. Renew Sustain Energy Rev, 2018, 91: 838–860CrossRefGoogle Scholar
  4. 4.
    Lai Q, Paskevicius M, Sheppard DA, et al. Hydrogen storage materials for mobile and stationary applications: Current state of the art. ChemSusChem, 2015, 8: 2789–2825CrossRefGoogle Scholar
  5. 5.
    Milanese C, Garroni S, Gennari F, et al. Solid state hydrogen storage in alanates and alanate-based compounds: A review. Metals, 2018, 8: 567CrossRefGoogle Scholar
  6. 6.
    Schneemann A, White JL, Kang SY, et al. Nanostructured metal hydrides for hydrogen storage. Chem Rev, 2018, 118: 10775–10839CrossRefGoogle Scholar
  7. 7.
    Jain A, Agarwal S, Ichikawa T. Catalytic tuning of sorption kinetics of lightweight hydrides: A review of the materials and mechanism. Catalysts, 2018, 8: 651CrossRefGoogle Scholar
  8. 8.
    Møller K, Sheppard D, Ravnsbæk D, et al. Complex metal hydrides for hydrogen, thermal and electrochemical energy storage. Energies, 2017, 10: 1645CrossRefGoogle Scholar
  9. 9.
    Mohtadi R, Orimo SI. The renaissance of hydrides as energy materials. Nat Rev Mater, 2016, 2: 16091CrossRefGoogle Scholar
  10. 10.
    Kim KC. A review on design strategies for metal hydrides with enhanced reaction thermodynamics for hydrogen storage applications. Int J Energy Res, 2018, 42: 1455–1468CrossRefGoogle Scholar
  11. 11.
    Aldridge S, Downs AJ. Hydrides of the main-group metals: New variations on an old theme. Chem Rev, 2001, 101: 3305–3366CrossRefGoogle Scholar
  12. 12.
    Sakintuna B, Lamaridarkrim F, Hirscher M. Metal hydride materials for solid hydrogen storage: A review. Int J Hydrogen Energy, 2007, 32: 1121–1140CrossRefGoogle Scholar
  13. 13.
    Orimo SI, Nakamori Y, Eliseo JR, et al. Complex hydrides for hydrogen storage. Chem Rev, 2007, 107: 4111–4132CrossRefGoogle Scholar
  14. 14.
    Zhang J, Li Z, Wu Y, et al. Recent advances on the thermal destabilization of Mg-based hydrogen storage materials. RSC Adv, 2019, 9: 408–428CrossRefGoogle Scholar
  15. 15.
    Wang Y, Wang Y. Recent advances in additive-enhanced magnesium hydride for hydrogen storage. Prog Nat Sci-Mater Int, 2017, 27: 41–49CrossRefGoogle Scholar
  16. 16.
    Fernández JF, Sánchez CR. Rate determining step in the absorption and desorption of hydrogen by magnesium. J Alloys Compd, 2002, 340: 189–198CrossRefGoogle Scholar
  17. 17.
    Zhu M, Lu Y, Ouyang L, et al. Thermodynamic tuning of Mgbased hydrogen storage alloys: A review. Materials, 2013, 6: 4654–4674CrossRefGoogle Scholar
  18. 18.
    Reilly Jr. JJ, Wiswall Jr. RH.. Reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4. Inorg Chem, 1968, 7: 2254–2256CrossRefGoogle Scholar
  19. 19.
    Shao H, Wang Y, Xu H, et al. Preparation and hydrogen storage properties of nanostructured Mg2Cu alloy. J Solid State Chem, 2005, 178: 2211–2217CrossRefGoogle Scholar
  20. 20.
    Yuan JG, Xing N, Wu Y. The effect of Mm content on microstructure and hydrogen storage properties of the as-cast Mg-10Ni-xMm (x=1, 2, 3 at.%) alloys. Int J Hydrogen Energy, 2017, 42: 6118–6126CrossRefGoogle Scholar
  21. 21.
    Reilly Jr. JJ, Wiswall Jr. RH. Reaction of hydrogen with alloys of magnesium and copper. Inorg Chem, 1967, 6: 2220–2223CrossRefGoogle Scholar
  22. 22.
    Zhao X, Han S, Zhu X, et al. Effect of LaH3-TiH2 composite additive on the hydrogen storage properties of Mg2Ni alloys. J Alloys Compd, 2013, 581: 270–274CrossRefGoogle Scholar
  23. 23.
    Song J, Han S, Fu R. Effect of La2O3-CaO composite additive on the hydrogen storage properties of Mg2Ni alloy. Mater Sci Eng-B, 2014, 188: 114–118CrossRefGoogle Scholar
  24. 24.
    Hou X, Hu R, Zhang T, et al. Hydrogen desorption performance of high-energy ball milled Mg2NiH4 catalyzed by multi-walled carbon nanotubes coupling with TiF3. Int J Hydrogen Energy, 2014, 39: 19672–19681CrossRefGoogle Scholar
  25. 25.
    Au YS, Ponthieu M, van Zwienen R, et al. Synthesis of Mg2Cu nanoparticles on carbon supports with enhanced hydrogen sorption kinetics. J Mater Chem A, 2013, 1: 9983–9991CrossRefGoogle Scholar
  26. 26.
    Khan D, Zou J, Zeng X, et al. Hydrogen storage properties of nanocrystalline Mg2Ni prepared from compressed 2MgH2Ni powder. Int J Hydrogen Energy, 2018, 43: 22391–22400CrossRefGoogle Scholar
  27. 27.
    Tran XQ, McDonald SD, Gu Q, et al. In-situ investigation of the hydrogen release mechanism in bulk Mg2NiH4. J Power Sources, 2017, 341: 130–138CrossRefGoogle Scholar
  28. 28.
    Javadian P, Zlotea C, Ghimbeu CM, et al. Hydrogen storage properties of nanoconfined LiBH4-Mg2NiH4 reactive hydride composites. J Phys Chem C, 2015, 119: 5819–5826CrossRefGoogle Scholar
  29. 29.
    Bergemann N, Pistidda C, Milanese C, et al. Ca(BH4)2-Mg2NiH4: on the pathway to a Ca(BH4)2 system with a reversible hydrogen cycle. Chem Commun, 2016, 52: 4836–4839CrossRefGoogle Scholar
  30. 30.
    Li S, Zhu Y, Liu Y, et al. Synergistic hydrogen desorption properties of the 4LiAlH4 + Mg2NiH4 composite. J Alloys Compd, 2017, 697: 80–85CrossRefGoogle Scholar
  31. 31.
    Cho ES, Ruminski AM, Liu YS, et al. Hierarchically controlled inside-out doping of Mg nanocomposites for moderate temperature hydrogen storage. Adv Funct Mater, 2017, 27: 1704316CrossRefGoogle Scholar
  32. 32.
    Huang X, Xiao X, Zhang W, et al. Transition metal (Co, Ni) nanoparticles wrapped with carbon and their superior catalytic activities for the reversible hydrogen storage of magnesium hydride. Phys Chem Chem Phys, 2017, 19: 4019–4029CrossRefGoogle Scholar
  33. 33.
    House SD, Vajo JJ, Ren C, et al. Effect of ball-milling duration and dehydrogenation on the morphology, microstructure and catalyst dispersion in Ni-catalyzed MgH2 hydrogen storage materials. Acta Mater, 2015, 86: 55–68CrossRefGoogle Scholar
  34. 34.
    Chen M, Xiao X, Zhang M, et al. Excellent synergistic catalytic mechanism of in-situ formed nanosized Mg2Ni and multiple valence titanium for improved hydrogen desorption properties of magnesium hydride. Int J Hydrogen Energy, 2019, 44: 1750–1759CrossRefGoogle Scholar
  35. 35.
    Zhang Q, Zang L, Huang Y, et al. Improved hydrogen storage properties of MgH2 with Ni-based compounds. Int J Hydrogen Energy, 2017, 42: 24247–24255CrossRefGoogle Scholar
  36. 36.
    Zhang Q, Xu Y, Wang Y, et al. Enhanced hydrogen storage performance of MgH2Ni2P/graphene nanosheets. Int J Hydrogen Energy, 2016, 41: 17000–17007CrossRefGoogle Scholar
  37. 37.
    Skripnyuk VM, Rabkin E. Mg3Cd: A model alloy for studying the destabilization of magnesium hydride. Int J Hydrogen Energy, 2012, 37: 10724–10732CrossRefGoogle Scholar
  38. 38.
    Wang Y, Zhou Z, Zhou W, et al. Effects of in-situ formed Mg2Si phase on the hydrogen storage properties of Mg-Li solid solution alloys. Mater Des, 2016, 111: 248–252CrossRefGoogle Scholar
  39. 39.
    Vajo JJ, Mertens F, Ahn CC, et al. Altering hydrogen storage properties by hydride destabilization through alloy formation: LiH and MgH2 destabilized with Si. J Phys Chem B, 2004, 108: 13977–13983CrossRefGoogle Scholar
  40. 40.
    Kelly ST, Van Atta SL, Vajo JJ, et al. Kinetic limitations of the Mg2Si system for reversible hydrogen storage. Nanotechnology, 2009, 20: 204017CrossRefGoogle Scholar
  41. 41.
    Si TZ, Zhang JB, Liu DM, et al. A new reversible Mg3Ag-H2 system for hydrogen storage. J Alloys Compd, 2013, 581: 246–249CrossRefGoogle Scholar
  42. 42.
    Zhong HC, Wang H, Liu JW, et al. Altered desorption enthalpy of MgH2 by the reversible formation of Mg(In) solid solution. Scripta Mater, 2011, 65: 285–287CrossRefGoogle Scholar
  43. 43.
    Ouyang LZ, Yang XS, Zhu M, et al. Enhanced hydrogen storage kinetics and stability by synergistic effects of in situ formed CeH2.73 and Ni in CeH2.73-MgH2-Ni nanocomposites. J Phys Chem C, 2014, 118: 7808–7820CrossRefGoogle Scholar
  44. 44.
    Ouyang LZ, Cao ZJ, Wang H, et al. Dual-tuning effect of In on the thermodynamic and kinetic properties of Mg2Ni dehydrogenation. Int J Hydrogen Energy, 2013, 38: 8881–8887CrossRefGoogle Scholar
  45. 45.
    Xu C, Lin HJ, Wang Y, et al. Catalytic effect of in situ formed nano-Mg2Ni and Mg2Cu on the hydrogen storage properties of Mg-Y hydride composites. J Alloys Compd, 2019, 782: 242–250CrossRefGoogle Scholar
  46. 46.
    Jiang X, Fu K, Xiao R, et al. Hydrogen storage properties of Y-Mg-Cu-H nanocomposite obtained by hydrogen-induced decomposition of YMg4Cu intermetallic. J Alloys Compd, 2018, 751: 176–182CrossRefGoogle Scholar
  47. 47.
    Andreasen A. Hydrogenation properties of Mg-Al alloys. Int J Hydrogen Energy, 2008, 33: 7489–7497CrossRefGoogle Scholar
  48. 48.
    Bouaricha S, Dodelet JP, Guay D, et al. Hydriding behavior of Mg-Al and leached Mg-Al compounds prepared by high-energy ball-milling. J Alloys Compd, 2000, 297: 282–293CrossRefGoogle Scholar
  49. 49.
    Li Y, Zhang Y, Shang H, et al. Investigation on structure and hydrogen storage performance of as-milled and cast Mg90Al10 alloys. Int J Hydrogen Energy, 2018, 43: 6642–6653CrossRefGoogle Scholar
  50. 50.
    Li Y, Shang H, Zhang Y, et al. Effects of adding nano-CeO2 powder on microstructure and hydrogen storage performances of mechanical alloyed Mg90Al10 alloy. Int J Hydrogen Energy, 2019, 44: 1735–1749CrossRefGoogle Scholar
  51. 51.
    Zhou C, Fang ZZ, Lu J, et al. Thermodynamic and kinetic destabilization of magnesium hydride using Mg-In solid solution alloys. J Am Chem Soc, 2013, 135: 10982–10985CrossRefGoogle Scholar
  52. 52.
    Wang H, Zhong H, Ouyang L, et al. Fully reversible de/hydriding of Mg base solid solutions with reduced reaction enthalpy and enhanced kinetics. J Phys Chem C, 2014, 118: 12087–12096CrossRefGoogle Scholar
  53. 53.
    Gleiter H. Nanostructured materials: basic concepts and microstructure. Acta Mater, 2000, 48: 1–29CrossRefGoogle Scholar
  54. 54.
    Wagemans RWP, van Lenthe JH, de Jongh PE, et al. Hydrogen storage in magnesium clusters: Quantum chemical study. J Am Chem Soc, 2005, 127: 16675–16680CrossRefGoogle Scholar
  55. 55.
    Imamura H, Masanari K, Kusuhara M, et al. High hydrogen storage capacity of nanosized magnesium synthesized by high energy ball-milling. J Alloys Compd, 2005, 386: 211–216CrossRefGoogle Scholar
  56. 56.
    Suryanarayana C. Mechanical alloying and milling. Prog Mater Sci, 2001, 46: 1–184CrossRefGoogle Scholar
  57. 57.
    Ouyang L, Cao Z, Wang H, et al. Application of dielectric barrier discharge plasma-assisted milling in energy storage materials-A review. J Alloys Compd, 2017, 691: 422–435CrossRefGoogle Scholar
  58. 58.
    Ouyang LZ, Cao ZJ, Wang H, et al. Enhanced dehydriding thermodynamics and kinetics in Mg(In)-MgF2 composite directly synthesized by plasma milling. J Alloys Compd, 2014, 586: 113–117CrossRefGoogle Scholar
  59. 59.
    Ma M, Yang L, Ouyang L, et al. Promoting hydrogen generation from the hydrolysis of Mg-graphite composites by plasma-assisted milling. Energy, 2019, 167: 1205–1211CrossRefGoogle Scholar
  60. 60.
    Paskevicius M, Sheppard DA, Buckley CE. Thermodynamic changes in mechanochemically synthesized magnesium hydride nanoparticles. J Am Chem Soc, 2010, 132: 5077–5083CrossRefGoogle Scholar
  61. 61.
    Doppiu S, Schultz L, Gutfleisch O. In situ pressure and temperature monitoring during the conversion of Mg into MgH2 by high-pressure reactive ball milling. J Alloys Compd, 2007, 427: 204–208CrossRefGoogle Scholar
  62. 62.
    Li W, Li C, Ma H, et al. Magnesium nanowires: Enhanced kinetics for hydrogen absorption and desorption. J Am Chem Soc, 2007, 129: 6710–6711CrossRefGoogle Scholar
  63. 63.
    Zhu C, Sakaguchi N, Hosokai S, et al. In situ transmission electron microscopy observation of the decomposition of MgH2 nanofiber. Int J Hydrogen Energy, 2011, 36: 3600–3605CrossRefGoogle Scholar
  64. 64.
    Zhu C, Hosokai S, Akiyama T. Direct synthesis of MgH2 nanofibers from waste Mg. Int J Hydrogen Energy, 2012, 37: 8379–8387CrossRefGoogle Scholar
  65. 65.
    Zhu C, Hosokai S, Matsumoto I, et al. Shape-controlled growth of MgH2/Mg nano/microstructures via hydriding chemical vapor deposition. Cryst Growth Des, 2010, 10: 5123–5128CrossRefGoogle Scholar
  66. 66.
    Zhang H, Zheng X, Wang T, et al. Significantly improved hydrogen desorption property of La2Mg17 alloy modified with Ni-Al nanocrystalline. Intermetallics, 2016, 70: 29–32CrossRefGoogle Scholar
  67. 67.
    Fry CMP, Grant DM, Walker GS. Catalysis and evolution on cycling of nano-structured magnesium multilayer thin films. Int J Hydrogen Energy, 2014, 39: 1173–1184CrossRefGoogle Scholar
  68. 68.
    Matsumoto I, Akiyama T, Nakamura Y, et al. Controlled shape of magnesium hydride synthesized by chemical vapor deposition. J Alloys Compd, 2010, 507: 502–507CrossRefGoogle Scholar
  69. 69.
    Cui J, Wang H, Sun DL, et al. Realizing nano-confinement of magnesium for hydrogen storage using vapour transport deposition. Rare Met, 2016, 35: 401–407CrossRefGoogle Scholar
  70. 70.
    Rieke RD, Hudnall PM. Activated metals. I. Preparation of highly reactive magnesium metal. J Am Chem Soc, 1972, 94: 7178–7179CrossRefGoogle Scholar
  71. 71.
    Zhang S, Gross AF, Van Atta SL, et al. The synthesis and hydrogen storage properties of a MgH2 incorporated carbon aerogel scaffold. Nanotechnology, 2009, 20: 204027CrossRefGoogle Scholar
  72. 72.
    Nielsen TK, Manickam K, Hirscher M, et al. Confinement of MgH2 nanoclusters within nanoporous aerogel scaffold materials. ACS Nano, 2009, 3: 3521–3528CrossRefGoogle Scholar
  73. 73.
    Norberg NS, Arthur TS, Fredrick SJ, et al. Size-dependent hydrogen storage properties of Mg nanocrystals prepared from solution. J Am Chem Soc, 2011, 133: 10679–10681CrossRefGoogle Scholar
  74. 74.
    Jeon KJ, Moon HR, Ruminski AM, et al. Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts. Nat Mater, 2011, 10: 286–290CrossRefGoogle Scholar
  75. 75.
    Liu Y, Zou J, Zeng X, et al. Study on hydrogen storage properties of Mg-X (X = Fe, Co, V) nano-composites co-precipitated from solution. RSC Adv, 2015, 5: 7687–7696CrossRefGoogle Scholar
  76. 76.
    de Jongh PE, Wagemans RWP, Eggenhuisen TM, et al. The preparation of carbon-supported magnesium nanoparticles using melt infiltration. Chem Mater, 2007, 19: 6052–6057CrossRefGoogle Scholar
  77. 77.
    Gross AF, Ahn CC, Van Atta SL, et al. Fabrication and hydrogen sorption behaviour of nanoparticulate MgH2 incorporated in a porous carbon host. Nanotechnology, 2009, 20: 204005CrossRefGoogle Scholar
  78. 78.
    Au YS, Obbink MK, Srinivasan S, et al. The size dependence of hydrogen mobility and sorption kinetics for carbon-supported MgH2 particles. Adv Funct Mater, 2014, 24: 3604–3611CrossRefGoogle Scholar
  79. 79.
    Zhao-Karger Z, Hu J, Roth A, et al. Altered thermodynamic and kinetic properties of MgH2 infiltrated in microporous scaffold. Chem Commun, 2010, 46: 8353–8355CrossRefGoogle Scholar
  80. 80.
    Konarova M, Tanksale A, Norberto Beltramini J, et al. Effects of nano-confinement on the hydrogen desorption properties of MgH2. Nano Energy, 2013, 2: 98–104CrossRefGoogle Scholar
  81. 81.
    Jia Y, Yao X. Carbon scaffold modified by metal (Ni) or nonmetal (N) to enhance hydrogen storage of MgH2 through nanoconfinement. Int J Hydrogen Energy, 2017, 42: 22933–22941CrossRefGoogle Scholar
  82. 82.
    Wang K, Wu G, Cao H, et al. Improved reversible dehydrogenation properties of MgH2 by the synergetic effects of graphene oxide-based porous carbon and TiCl3. Int J Hydrogen Energy, 2018, 43: 7440–7446CrossRefGoogle Scholar
  83. 83.
    Shinde SS, Kim DH, Yu JY, et al. Self-assembled air-stable magnesium hydride embedded in 3-D activated carbon for reversible hydrogen storage. Nanoscale, 2017, 9: 7094–7103CrossRefGoogle Scholar
  84. 84.
    Xia G, Tan Y, Chen X, et al. Monodisperse magnesium hydride nanoparticles uniformly self-assembled on graphene. Adv Mater, 2015, 27: 5981–5988CrossRefGoogle Scholar
  85. 85.
    Cho ES, Ruminski AM, Aloni S, et al. Graphene oxide/metal nanocrystal multilaminates as the atomic limit for safe and selective hydrogen storage. Nat Commun, 2016, 7: 10804CrossRefGoogle Scholar
  86. 86.
    Huang Y, Xia G, Chen J, et al. One-step uniform growth of magnesium hydride nanoparticles on graphene. Prog Nat Sci-Mater Int, 2017, 27: 81–87CrossRefGoogle Scholar
  87. 87.
    Zhang J, Zhu Y, Lin H, et al. Metal hydride nanoparticles with ultrahigh structural stability and hydrogen storage activity derived from microencapsulated nanoconfinement. Adv Mater, 2017, 29: 1700760CrossRefGoogle Scholar
  88. 88.
    Shang CX, Guo ZX. Effect of carbon on hydrogen desorption and absorption of mechanically milled MgH2. J Power Sources, 2004, 129: 73–80CrossRefGoogle Scholar
  89. 89.
    Wu CZ, Wang P, Yao X, et al. Hydrogen storage properties of MgH2/SWNT composite prepared by ball milling. J Alloys Compd, 2006, 420: 278–282CrossRefGoogle Scholar
  90. 90.
    Shao H, Felderhoff M, Schüth F. Hydrogen storage properties of nanostructured MgH2/TiH2 composite prepared by ball milling under high hydrogen pressure. Int J Hydrogen Energy, 2011, 36: 10828–10833CrossRefGoogle Scholar
  91. 91.
    Korablov D, Besenbacher F, Jensen TR. Kinetics and thermodynamics of hydrogenation-dehydrogenation for Mg-25%TM (TM = Ti, Nb or V) composites synthesized by reactive ball milling in hydrogen. Int J Hydrogen Energy, 2018, 43: 16804–16814CrossRefGoogle Scholar
  92. 92.
    Cui J, Wang H, Liu J, et al. Remarkable enhancement in dehydrogenation of MgH2 by a nano-coating of multi-valence Ti-based catalysts. J Mater Chem A, 2013, 1: 5603–5611CrossRefGoogle Scholar
  93. 93.
    Ma LP, Kang XD, Dai HB, et al. Superior catalytic effect of TiF3 over TiCl3 in improving the hydrogen sorption kinetics of MgH2: Catalytic role of fluorine anion. Acta Mater, 2009, 57: 2250–2258CrossRefGoogle Scholar
  94. 94.
    Wang P, Wang AM, Zhang HF, et al. Hydrogenation characteristics of Mg-TiO2 (rutile) composite. J Alloys Compd, 2000, 313: 218–223CrossRefGoogle Scholar
  95. 95.
    Zhang L, Chen L, Fan X, et al. Enhanced hydrogen storage properties of MgH2 with numerous hydrogen diffusion channels provided by Na2Ti3O7 nanotubes. J Mater Chem A, 2017, 5: 6178–6185CrossRefGoogle Scholar
  96. 96.
    Liu Y, Du H, Zhang X, et al. Superior catalytic activity derived from a two-dimensional Ti3C2 precursor towards the hydrogen storage reaction of magnesium hydride. Chem Commun, 2016, 52: 705–708CrossRefGoogle Scholar
  97. 97.
    Dehouche Z, Klassen T, Oelerich W, et al. Cycling and thermal stability of nanostructured MgH2-Cr2O3 composite for hydrogen storage. J Alloys Compd, 2002, 347: 319–323CrossRefGoogle Scholar
  98. 98.
    Zhang W, Xu G, Cheng Y, et al. Improved hydrogen storage properties of MgH2 by the addition of FeS2 micro-spheres. Dalton Trans, 2018, 47: 5217–5225CrossRefGoogle Scholar
  99. 99.
    Mustafa NS, Ismail M. Hydrogen sorption improvement of MgH2 catalyzed by CeO2 nanopowder. J Alloys Compd, 2017, 695: 2532–2538CrossRefGoogle Scholar
  100. 100.
    Zhang M, Xiao X, Wang X, et al. Excellent catalysis of TiO2 nanosheets with high-surface-energy {001} facets on the hydrogen storage properties of MgH2. Nanoscale, 2019, 11: 7465–7473CrossRefGoogle Scholar
  101. 101.
    Wang Y, Li L, An C, et al. Facile synthesis of TiN decorated graphene and its enhanced catalytic effects on dehydrogenation performance of magnesium hydride. Nanoscale, 2014, 6: 6684–6691CrossRefGoogle Scholar
  102. 102.
    Wang Z, Ren Z, Jian N, et al. Vanadium oxide nanoparticles supported on cubic carbon nanoboxes as highly active catalyst precursors for hydrogen storage in MgH2. J Mater Chem A, 2018, 6: 16177–16185CrossRefGoogle Scholar
  103. 103.
    Bhatnagar A, Pandey SK, Vishwakarma AK, et al. Fe3O4@graphene as a superior catalyst for hydrogen de/absorption from/in MgH2/Mg. J Mater Chem A, 2016, 4: 14761–14772CrossRefGoogle Scholar
  104. 104.
    Liu G, Wang Y, Qiu F, et al. Synthesis of porous Ni@rGO nanocomposite and its synergetic effect on hydrogen sorption properties of MgH2. J Mater Chem, 2012, 22: 22542–22549CrossRefGoogle Scholar
  105. 105.
    Zhang Q, Wang Y, Zang L, et al. Core-shell Ni3N@Nitrogen-doped carbon: Synthesis and application in MgH2. J Alloys Compd, 2017, 703: 381–388CrossRefGoogle Scholar
  106. 106.
    Kecik D, Aydinol MK. Density functional and dynamics study of the dissociative adsorption of hydrogen on Mg (0001) surface. Surf Sci, 2009, 603: 304–310CrossRefGoogle Scholar
  107. 107.
    Liang G, Huot J, Boily S, et al. Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2-Tm (Tm=Ti, V, Mn, Fe and Ni) systems. J Alloys Compd, 1999, 292: 247–252CrossRefGoogle Scholar
  108. 108.
    Hanada N, Ichikawa T, Fujii H. Catalytic effect of nanoparticle 3d-transition metals on hydrogen storage properties in magnesium hydride MgH2 prepared by mechanical milling. J Phys Chem B, 2005, 109: 7188–7194CrossRefGoogle Scholar
  109. 109.
    Oelerich W, Klassen T, Bormann R. Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials. J Alloys Compd, 2001, 315: 237–242CrossRefGoogle Scholar
  110. 110.
    Aguey-Zinsou K, Ares Fernandez J, Klassen T, et al. Effect of Nb2O5 on MgH2 properties during mechanical milling. Int J Hydrogen Energy, 2007, 32: 2400–2407CrossRefGoogle Scholar
  111. 111.
    Malka IE, Czujko T, Bystrzycki J. Catalytic effect of halide additives ball milled with magnesium hydride. Int J Hydrogen Energy, 2010, 35: 1706–1712CrossRefGoogle Scholar
  112. 112.
    Jin SA, Shim JH, Cho YW, et al. Dehydrogenation and hydrogenation characteristics of MgH2 with transition metal fluorides. J Power Sources, 2007, 172: 859–862CrossRefGoogle Scholar
  113. 113.
    Zhang J, Zhu Y, Zang X, et al. Nickel-decorated graphene nanoplates for enhanced H2 sorption properties of magnesium hydride at moderate temperatures. J Mater Chem A, 2016, 4: 2560–2570CrossRefGoogle Scholar
  114. 114.
    Zhang J, Li S, Zhu Y, et al. Controllable fabrication of Ni-based catalysts and their enhancement on desorption properties of MgH2. J Alloys Compd, 2017, 715: 329–336CrossRefGoogle Scholar
  115. 115.
    Wang Y, Liu G, An C, et al. Bimetallic NiCo functional graphene: An efficient catalyst for hydrogen-storage properties of MgH2. Chem Asian J, 2014, 9: 2576–2583CrossRefGoogle Scholar
  116. 116.
    Soni PK, Bhatnagar A, Shaz MA, et al. Effect of graphene templated fluorides of Ce and La on the de/rehydrogenation behavior of MgH2. Int J Hydrogen Energy, 2017, 42: 20026–20035CrossRefGoogle Scholar
  117. 117.
    Zhang X, Leng Z, Gao M, et al. Enhanced hydrogen storage properties of MgH2 catalyzed with carbon-supported nanocrystalline TiO2. J Power Sources, 2018, 398: 183–192CrossRefGoogle Scholar
  118. 118.
    Li HW, Yan Y, Orimo S, et al. Recent progress in metal borohydrides for hydrogen storage. Energies, 2011, 4: 185–214CrossRefGoogle Scholar
  119. 119.
    Nakamori Y, Miwa K, Ninomiya A, et al. Correlation between thermodynamical stabilities of metal borohydrides and cation electronegativites: First-principles calculations and experiments. Phys Rev B, 2006, 74: 045126CrossRefGoogle Scholar
  120. 120.
    Au M, Walters RT. Reversibility aspect of lithium borohydrides. Int J Hydrogen Energy, 2010, 35: 10311–10316CrossRefGoogle Scholar
  121. 121.
    Varin RA, Chiu C. Structural stability of sodium borohydride (NaBH4) during controlled mechanical milling. J Alloys Compd, 2005, 397: 276–281CrossRefGoogle Scholar
  122. 122.
    Wan X, Shaw LL. Novel dehydrogenation properties derived from nanoscale LiBH4. Acta Mater, 2011, 59: 4606–4615CrossRefGoogle Scholar
  123. 123.
    Pang Y, Liu Y, Gao M, et al. A mechanical-force-driven physical vapour deposition approach to fabricating complex hydride nanostructures. Nat Commun, 2014, 5: 3519CrossRefGoogle Scholar
  124. 124.
    Gross AF, Vajo JJ, Van Atta SL, et al. Enhanced hydrogen storage kinetics of LiBH4 in nanoporous carbon scaffolds. J Phys Chem C, 2008, 112: 5651–5657CrossRefGoogle Scholar
  125. 125.
    Liu X, Peaslee D, Jost CZ, et al. Systematic pore-size effects of nanoconfinement of LiBH4: Elimination of diborane release and tunable behavior for hydrogen storage applications. Chem Mater, 2011, 23: 1331–1336CrossRefGoogle Scholar
  126. 126.
    Ngene P, van Zwienen MR, de Jongh PE. Reversibility of the hydrogen desorption from LiBH4: a synergetic effect of nanoconfinement and Ni addition. Chem Commun, 2010, 46: 8201–8203CrossRefGoogle Scholar
  127. 127.
    Ngene P, Adelhelm P, Beale AM, et al. LiBH4/SBA-15 nanocomposites prepared by melt infiltration under hydrogen pressure: Synthesis and hydrogen sorption properties. J Phys Chem C, 2010, 114: 6163–6168CrossRefGoogle Scholar
  128. 128.
    Shao J, Xiao X, Fan X, et al. Enhanced hydrogen storage capacity and reversibility of LiBH4 nanoconfined in the densified zeolite-templated carbon with high mechanical stability. Nano Energy, 2015, 15: 244–255CrossRefGoogle Scholar
  129. 129.
    Ngene P, van den Berg R, Verkuijlen MHW, et al. Reversibility of the hydrogen desorption from NaBH4 by confinement in nanoporous carbon. Energy Environ Sci, 2011, 4: 4108–4115CrossRefGoogle Scholar
  130. 130.
    Fang ZZ, Wang P, Rufford TE, et al. Kinetic- and thermodynamic-based improvements of lithium borohydride incorporated into activated carbon. Acta Mater, 2008, 56: 6257–6263CrossRefGoogle Scholar
  131. 131.
    Sun W, Li S, Mao J, et al. Nanoconfinement of lithium borohydride in Cu-MOFs towards low temperature dehydrogenation. Dalton Trans, 2011, 40: 5673–5676CrossRefGoogle Scholar
  132. 132.
    Liu H, Jiao L, Zhao Y, et al. Improved dehydrogenation performance of LiBH4 by confinement into porous TiO2 micro-tubes. J Mater Chem A, 2014, 2: 9244–9250CrossRefGoogle Scholar
  133. 133.
    Xu X, Zang L, Zhao Y, et al. Hydrogen storage behavior of LiBH4 improved by the confinement of hierarchical porous ZnO/ZnCo2O4 nanoparticles. J Power Sources, 2017, 359: 134–141CrossRefGoogle Scholar
  134. 134.
    Zang L, Sun W, Liu S, et al. Enhanced hydrogen storage properties and reversibility of LiBH4 confined in two-dimensional Ti3C2. ACS Appl Mater Interfaces, 2018, 10: 19598–19604CrossRefGoogle Scholar
  135. 135.
    Ampoumogli A, Steriotis T, Trikalitis P, et al. Nanostructured composites of mesoporous carbons and boranates as hydrogen storage materials. J Alloys Compd, 2011, 509: S705–S708CrossRefGoogle Scholar
  136. 136.
    Peru F, Garroni S, Campesi R, et al. Ammonia-free infiltration of NaBH4 into highly-ordered mesoporous silica and carbon matrices for hydrogen storage. J Alloys Compd, 2013, 580: S309–S312CrossRefGoogle Scholar
  137. 137.
    Chong L, Zeng X, Ding W, et al. NaBH4 in “Graphene Wrapper:” significantly enhanced hydrogen storage capacity and regenerability through nanoencapsulation. Adv Mater, 2015, 27: 5070–5074CrossRefGoogle Scholar
  138. 138.
    Fichtner M, Zhao-Karger Z, Hu J, et al. The kinetic properties of Mg(BH4)2 infiltrated in activated carbon. Nanotechnology, 2009, 20: 204029CrossRefGoogle Scholar
  139. 139.
    Yang Y, Liu Y, Li Y, et al. Towards the endothermic dehydrogenation of nanoconfined magnesium borohydride ammoniate. J Mater Chem A, 2015, 3: 11057–11065CrossRefGoogle Scholar
  140. 140.
    Wahab MA, Jia YA, Yang D, et al. Enhanced hydrogen desorption from Mg(BH4)2 by combining nanoconfinement and a Ni catalyst. J Mater Chem A, 2013, 1: 3471–3478CrossRefGoogle Scholar
  141. 141.
    Clémençon D, Davoisne C, Chotard JN, et al. Enhancement of the hydrogen release of Mg(BH4)2 by concomitant effects of nanoconfinement and catalysis. Int J Hydrogen Energy, 2019, 44: 4253–4262CrossRefGoogle Scholar
  142. 142.
    Suwarno, Ngene P, Nale A, et al. Confinement effects for lithium borohydride: Comparing silica and carbon scaffolds. J Phys Chem C, 2017, 121: 4197–4205CrossRefGoogle Scholar
  143. 143.
    Li Y, Ding X, Zhang Q. Self-printing on graphitic nanosheets with metal borohydride nanodots for hydrogen storage. Sci Rep, 2016, 6: 31144CrossRefGoogle Scholar
  144. 144.
    Zhang H, Xia G, Zhang J, et al. Graphene-tailored thermodynamics and kinetics to fabricate metal borohydride nanoparticles with high purity and enhanced reversibility. Adv Energy Mater, 2018, 8: 1702975CrossRefGoogle Scholar
  145. 145.
    Yu XB, Wu Z, Chen QR, et al. Improved hydrogen storage properties of LiBH4 destabilized by carbon. Appl Phys Lett, 2007, 90: 034106CrossRefGoogle Scholar
  146. 146.
    Cai W, Chen J, Liu L, et al. Tuning the structural stability of LiBH4 through boron-based compounds towards superior dehydrogenation. J Mater Chem A, 2018, 6: 1171–1180CrossRefGoogle Scholar
  147. 147.
    Dolotko O, Gupta S, Kobayashi T, et al. Mechanochemical reactions and hydrogen storage capacities in MBH4-SiS2 systems (M=Li or Na). Int J Hydrogen Energy, 2019, 44: 7381–7391CrossRefGoogle Scholar
  148. 148.
    Fu H, Wu Y, Chen J, et al. Promoted hydrogen release from alkali metal borohydrides in ionic liquids. Inorg Chem Front, 2016, 3: 1137–1145CrossRefGoogle Scholar
  149. 149.
    Zhang W, Xu G, Chen L, et al. Enhanced hydrogen storage performances of LiBH4 modified with three-dimensional porous fluorinated graphene. Int J Hydrogen Energy, 2017, 42: 15262–15270CrossRefGoogle Scholar
  150. 150.
    Pinkerton FE, Meisner GP, Meyer MS, et al. Hydrogen desorption exceeding ten weight percent from the new quaternary hydride Li3BN2H8. J Phys Chem B, 2005, 109: 6–8CrossRefGoogle Scholar
  151. 151.
    Vajo JJ, Skeith SL, Mertens F. Reversible storage of hydrogen in destabilized LiBH4. J Phys Chem B, 2005, 109: 3719–3722CrossRefGoogle Scholar
  152. 152.
    Xia G, Tan Y, Wu F, et al. Graphene-wrapped reversible reaction for advanced hydrogen storage. Nano Energy, 2016, 26: 488–495CrossRefGoogle Scholar
  153. 153.
    Huang X, Xiao X, Shao J, et al. Building robust architectures of carbon-wrapped transition metal nanoparticles for high catalytic enhancement of the 2LiBH4-MgH2 system for hydrogen storage cycling performance. Nanoscale, 2016, 8: 14898–14908CrossRefGoogle Scholar
  154. 154.
    Yang J, Sudik A, Wolverton C. Destabilizing LiBH4 with a metal (M = Mg, Al, Ti, V, Cr, or Sc) or metal hydride (MH2 = MgH2, TiH2, or CaH2). J Phys Chem C, 2007, 111: 19134–19140CrossRefGoogle Scholar
  155. 155.
    Li Y, Li P, Qu X. Investigation on LiBH4-CaH2 composite and its potential for thermal energy storage. Sci Rep, 2017, 7: 41754CrossRefGoogle Scholar
  156. 156.
    Jin SA, Lee YS, Shim JH, et al. Reversible hydrogen storage in LiBH4-MH2 (M = Ce, Ca) composites. J Phys Chem C, 2008, 112: 9520–9524CrossRefGoogle Scholar
  157. 157.
    Yu XB, Grant DM, Walker GS. Dehydrogenation of LiBH4 destabilized with various oxides. J Phys Chem C, 2009, 113: 17945–17949CrossRefGoogle Scholar
  158. 158.
    Zang L, Zhang Q, Li L, et al. Improved dehydrogenation properties of LiBH4 using catalytic nickel- and cobalt-based mesoporous oxide nanorods. Chem Asian J, 2018, 13: 99–105CrossRefGoogle Scholar
  159. 159.
    Guo YH, Yu XB, Gao L, et al. Significantly improved dehydrogenation of LiBH4 destabilized by TiF3. Energy Environ Sci, 2010, 3: 465–470CrossRefGoogle Scholar
  160. 160.
    Au M, Jurgensen AR, Spencer WA, et al. Stability and reversibility of lithium borohydrides doped by metal halides and hydrides. J Phys Chem C, 2008, 112: 18661–18671CrossRefGoogle Scholar
  161. 161.
    Chong L, Zou J, Zeng X, et al. Effects of LnF3 on reversible and cyclic hydrogen sorption behaviors in NaBH4: electronic nature of Ln versus crystallographic factors. J Mater Chem A, 2015, 3: 4493–4500CrossRefGoogle Scholar
  162. 162.
    Zhao Y, Liu Y, Liu H, et al. Improved dehydrogenation performance of LiBH4 by 3D hierarchical flower-like MoS2 spheres additives. J Power Sources, 2015, 300: 358–364CrossRefGoogle Scholar
  163. 163.
    Somer M, Acar S, Koz C, et al. α- and β-Na2[BH4][NH2]: Two modifications of a complex hydride in the system NaNH2-NaBH4; syntheses, crystal structures, thermal analyses, mass and vibrational spectra. J Alloys Compd, 2010, 491: 98–105CrossRefGoogle Scholar
  164. 164.
    Garroni S, Pistidda C, Brunelli M, et al. Hydrogen desorption mechanism of 2NaBH4+MgH2 composite prepared by high-energy ball milling. Scripta Mater, 2009, 60: 1129–1132CrossRefGoogle Scholar
  165. 165.
    Christian ML, Aguey-Zinsou KF. Core-shell strategy leading to high reversible hydrogen storage capacity for NaBH4. ACS Nano, 2012, 6: 7739–7751CrossRefGoogle Scholar
  166. 166.
    Mao J, Guo Z, Nevirkovets IP, et al. Hydrogen de-/absorption improvement of NaBH4 catalyzed by titanium-based additives. J Phys Chem C, 2012, 116: 1596–1604CrossRefGoogle Scholar
  167. 167.
    Chong L, Zou J, Zeng X, et al. Mechanisms of reversible hydrogen storage in NaBH4 through NdF3 addition. J Mater Chem A, 2013, 1: 3983–3991CrossRefGoogle Scholar
  168. 168.
    Yu XB, Guo YH, Sun DL, et al. A combined hydrogen storage system of Mg(BH4)2-LiNH2 with favorable dehydrogenation. J Phys Chem C, 2010, 114: 4733–4737CrossRefGoogle Scholar
  169. 169.
    Li HW, Kikuchi K, Nakamori Y, et al. Effects of ball milling and additives on dehydriding behaviors of well-crystallized Mg(BH4)2. Scripta Mater, 2007, 57: 679–682CrossRefGoogle Scholar
  170. 170.
    Newhouse RJ, Stavila V, Hwang SJ, et al. Reversibility and improved hydrogen release of magnesium borohydride. J Phys Chem C, 2010, 114: 5224–5232CrossRefGoogle Scholar
  171. 171.
    Zavorotynska O, Saldan I, Hino S, et al. Hydrogen cycling in γ-Mg(BH4)2 with cobalt-based additives. J Mater Chem A, 2015, 3: 6592–6602CrossRefGoogle Scholar
  172. 172.
    Yang Y, Liu Y, Li Y, et al. Fluorine-substituted Mg(BH4)2-2NH3 with improved dehydrogenation properties for hydrogen storage. J Mater Chem A, 2015, 3: 570–578CrossRefGoogle Scholar
  173. 173.
    Liu C, Huang S. A first-principles study of the tuning effect of a Fe2O3 cluster on the dehydrogenation properties of a LiBH4 (001) surface. Dalton Trans, 2016, 45: 10954–10959CrossRefGoogle Scholar
  174. 174.
    Zhang J, Li P, Wan Q, et al. Superior destabilization effects of LiBH4 with the addition of nano-sized nickel ferrite NiFe2O4. RSC Adv, 2015, 5: 81212–81219CrossRefGoogle Scholar
  175. 175.
    Ali NA, Yahya MS, Mustafa NS, et al. Modifying the hydrogen storage performances of NaBH4 by catalyzing with MgFe2O4 synthesized via hydrothermal method. Int J Hydrogen Energy, 2019, 44: 6720–6727CrossRefGoogle Scholar
  176. 176.
    Yin L, Wang P, Fang Z, et al. Thermodynamically tuning LiBH4 by fluorine anion doping for hydrogen storage: A density functional study. Chem Phys Lett, 2008, 450: 318–321CrossRefGoogle Scholar
  177. 177.
    Richter B, Ravnsbæk DB, Sharma M, et al. Fluoride substitution in LiBH4; destabilization and decomposition. Phys Chem Chem Phys, 2017, 19: 30157–30165CrossRefGoogle Scholar
  178. 178.
    Zheng J, Xiao X, Zhang L, et al. Facile synthesis of bowl-like 3D Mg(BH4)2-NaBH4-fluorographene composite with unexpected superior dehydrogenation performances. J Mater Chem A, 2017, 5: 9723–9732CrossRefGoogle Scholar
  179. 179.
    Bogdanović B, Schwickardi M. Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials. J Alloys Compd, 1997, 253–254: 1–9CrossRefGoogle Scholar
  180. 180.
    Nielsen TK, Javadian P, Polanski M, et al. Nanoconfined NaAlH4: Determination of distinct prolific effects from pore size, crystallite size, and surface interactions. J Phys Chem C, 2012, 116: 21046–21051CrossRefGoogle Scholar
  181. 181.
    Li L, Xu C, Chen C, et al. Sodium alanate system for efficient hydrogen storage. Int J Hydrogen Energy, 2013, 38: 8798–8812CrossRefGoogle Scholar
  182. 182.
    Wahab MA, Beltramini JN. Catalytic nanoconfinement effect of in-situ synthesized Ni-containing mesoporous carbon scaffold (Ni-MCS) on the hydrogen storage properties of LiAlH4. Int J Hydrogen Energy, 2014, 39: 18280–18290CrossRefGoogle Scholar
  183. 183.
    Wang H, Lin HJ, Cai WT, et al. Tuning kinetics and thermodynamics of hydrogen storage in light metal element based systems-A review of recent progress. J Alloys Compd, 2016, 658: 280–300CrossRefGoogle Scholar
  184. 184.
    Adimi S, Arabi H, Ghorbani SR, et al. AB-initio study of pressure-induced aluminum hydrides AAlH4 (A = Li, Na, K, Rb, Cs). Int J Hydrogen Energy, 2017, 42: 25303–25309CrossRefGoogle Scholar
  185. 185.
    Pang Y, Li Q. Insight into the kinetic mechanism of the first-step dehydrogenation of Mg(AlH4)2. Scripta Mater, 2017, 130: 223–228CrossRefGoogle Scholar
  186. 186.
    Lohstroh W, Roth A, Hahn H, et al. Thermodynamic effects in nanoscale NaAlH4. ChemPhysChem, 2010, 11: 789–792CrossRefGoogle Scholar
  187. 187.
    Stavila V, Bhakta RK, Alam TM, et al. Reversible hydrogen storage by NaAlH4 confined within a titanium-functionalized MOF-74(Mg) nanoreactor. ACS Nano, 2012, 6: 9807–9817CrossRefGoogle Scholar
  188. 188.
    Klose M, Lindemann I, Minella CB, et al. Unusual oxidation behavior of light metal hydride by tetrahydrofuran solvent molecules confined in ordered mesoporous carbon. J Mater Res, 2013, 29: 55–63CrossRefGoogle Scholar
  189. 189.
    Javadian P, Sheppard D, Buckley C, et al. Hydrogen desorption properties of bulk and nanoconfined LiBH4-NaAlH4. Crystals, 2016, 6: 70CrossRefGoogle Scholar
  190. 190.
    Gao Q, Xia G, Yu X. Confined NaAlH4 nanoparticles inside CeO2 hollow nanotubes towards enhanced hydrogen storage. Nanoscale, 2017, 9: 14612–14619CrossRefGoogle Scholar
  191. 191.
    Kim JW, Shim JH, Kim SC, et al. Catalytic effect of titanium nitride nanopowder on hydrogen desorption properties of NaAlH4 and its stability in NaAlH4. J Power Sources, 2009, 192: 582–587CrossRefGoogle Scholar
  192. 192.
    Li L, Qiu F, Wang Y, et al. Crystalline TiB2: An efficient catalyst for synthesis and hydrogen desorption/absorption performances of NaAlH4 system. J Mater Chem, 2012, 22: 3127CrossRefGoogle Scholar
  193. 193.
    Li L, An C, Wang Y, et al. Enhancement of the H2 desorption properties of LiAlH4 doping with NiCo2O4 nanorods. Int J Hydrogen Energy, 2014, 39: 4414–4420CrossRefGoogle Scholar
  194. 194.
    Zhao X, Ma Z, Wu D, et al. Computational study of catalytic effect of C3N4 on H2 release from complex hydrides. Int J Hydrogen Energy, 2015, 40: 8897–8902CrossRefGoogle Scholar
  195. 195.
    Filippi M, Rector JH, Gremaud R, et al. Lightweight sodium alanate thin films grown by reactive sputtering. Appl Phys Lett, 2009, 95: 121904CrossRefGoogle Scholar
  196. 196.
    Beattie SD, McGrady GS. Hydrogen desorption studies of NaAlH4 and LiAlH4 by in situ heating in an ESEM. Int J Hydrogen Energy, 2009, 34: 9151–9156CrossRefGoogle Scholar
  197. 197.
    Pang Y, Liu Y, Zhang X, et al. Composition-dependent reaction pathways and hydrogen storage properties of LiBH4/Mg(AlH4)2 composites. Chem Asian J, 2015, 10: 2452–2459CrossRefGoogle Scholar
  198. 198.
    Halim Yap FA, Ali NA, Idris NH, et al. Catalytic effect of MgFe2O4 on the hydrogen storage properties of Na3AlH6-LiBH4 composite system. Int J Hydrogen Energy, 2018, 43: 20882–20891CrossRefGoogle Scholar
  199. 199.
    Gao J, Adelhelm P, Verkuijlen MHW, et al. Confinement of NaAlH4 in nanoporous carbon: Impact on H2 release, reversibility, and thermodynamics. J Phys Chem C, 2010, 114: 4675–4682CrossRefGoogle Scholar
  200. 200.
    Wang L, Rawal A, Quadir MZ, et al. Nanoconfined lithium aluminium hydride (LiAlH4) and hydrogen reversibility. Int J Hydrogen Energy, 2017, 42: 14144–14153CrossRefGoogle Scholar
  201. 201.
    Pinkerton FE. Comparison of hydrogen cycling kinetics in NaAlH4-carbon aerogel composites synthesized by melt infusion or ball milling. J Alloys Compd, 2011, 509: 8958–8964CrossRefGoogle Scholar
  202. 202.
    Gutowska A, Li L, Shin Y, et al. Nanoscaffold mediates hydrogen release and the reactivity of ammonia borane. Angew Chem Int Ed, 2005, 44: 3578–3582CrossRefGoogle Scholar
  203. 203.
    Mueller T, Ceder G. Effect of particle size on hydrogen release from sodium alanate nanoparticles. ACS Nano, 2010, 4: 5647–5656CrossRefGoogle Scholar
  204. 204.
    Varin RA, Zbroniec L. Decomposition behavior of unmilled and ball milled lithium alanate (LiAlH4) including long-term storage and moisture effects. J Alloys Compd, 2010, 504: 89–101CrossRefGoogle Scholar
  205. 205.
    Prasad Yadav T, Manohar Yadav R, Pratap Singh D. Mechanical milling: A top down approach for the synthesis of nanomaterials and nanocomposites. NN, 2012, 2: 22–48CrossRefGoogle Scholar
  206. 206.
    Xiong R, Sang G, Yan X, et al. Improvement of the hydrogen storage kinetics of NaAlH4 with Ti-loaded high-ordered mesoporous carbons (Ti-OMCs) by melt infiltration. J Mater Chem, 2012, 22: 17183CrossRefGoogle Scholar
  207. 207.
    Fan X, Xiao X, Shao J, et al. Size effect on hydrogen storage properties of NaAlH4 confined in uniform porous carbons. Nano Energy, 2013, 2: 995–1003CrossRefGoogle Scholar
  208. 208.
    Zheng S, Fang F, Zhou G, et al. Hydrogen storage properties of space-confined NaAlH4 nanoparticles in ordered mesoporous silica. Chem Mater, 2008, 20: 3954–3958CrossRefGoogle Scholar
  209. 209.
    Li Y, Zhou G, Fang F, et al. De-/re-hydrogenation features of NaAlH4 confined exclusively in nanopores. Acta Mater, 2011, 59: 1829–1838CrossRefGoogle Scholar
  210. 210.
    Balde CP, Hereijgers BPC, Bitter JH, et al. Sodium alanate nanoparticles-linking size to hydrogen storage properties. J Am Chem Soc, 2008, 130: 6761–6765CrossRefGoogle Scholar
  211. 211.
    Stephens RD, Gross AF, Van Atta SL, et al. The kinetic enhancement of hydrogen cycling in NaAlH4 by melt infusion into nanoporous carbon aerogel. Nanotechnology, 2009, 20: 204018CrossRefGoogle Scholar
  212. 212.
    Carr CL, Jayawardana W, Zou H, et al. Anomalous H2 desorption rate of NaAlH4 confined in nitrogen-doped nanoporous carbon frameworks. Chem Mater, 2018, 30: 2930–2938CrossRefGoogle Scholar
  213. 213.
    Bhakta RK, Herberg JL, Jacobs B, et al. Metal-organic frameworks as templates for nanoscale NaAlH4. J Am Chem Soc, 2009, 131: 13198–13199CrossRefGoogle Scholar
  214. 214.
    Christian M, Aguey-Zinsou KF. Destabilisation of complex hydrides through size effects. Nanoscale, 2010, 2: 2587–2590CrossRefGoogle Scholar
  215. 215.
    Liu Y, Ren Z, Zhang X, et al. Development of catalyst-enhanced sodium alanate as an advanced hydrogen-storage material for mobile applications. Energy Technol, 2018, 6: 487–500CrossRefGoogle Scholar
  216. 216.
    Abd.Khalim Khafidz NZ, Yaakob Z, Lim KL, et al. The kinetics of lightweight solid-state hydrogen storage materials: A review. Int J Hydrogen Energy, 2016, 41: 13131–13151CrossRefGoogle Scholar
  217. 217.
    Wang Q, Chen YG, Wu CL, et al. Catalytic effect and reaction mechanism of Ti doped in NaAlH4: A review. Sci Bull, 2008, 53: 1784–1788CrossRefGoogle Scholar
  218. 218.
    Jensen C. Advanced titanium doping of sodium aluminum hydride: segue to a practical hydrogen storage material? Int J Hydrogen Energy, 1999, 24: 461–465CrossRefGoogle Scholar
  219. 219.
    Sandrock G, Gross K, Thomas G, et al. Engineering considerations in the use of catalyzed sodium alanates for hydrogen storage. J Alloys Compd, 2002, 330–332: 696–701CrossRefGoogle Scholar
  220. 220.
    Wang P, Kang XD, Cheng HM. Improved hydrogen storage of TiF3-doped NaAlH4. ChemPhysChem, 2005, 6: 2488–2491CrossRefGoogle Scholar
  221. 221.
    Langmi HW, McGrady GS, Liu X, et al. Modification of the H2 desorption properties of LiAlH4 through doping with Ti. J Phys Chem C, 2010, 114: 10666–10669CrossRefGoogle Scholar
  222. 222.
    Liu SS, Zhang Y, Sun LX, et al. The dehydrogenation performance and reaction mechanisms of Li3AlH6 with TiF3 additive. Int J Hydrogen Energy, 2010, 35: 4554–4561CrossRefGoogle Scholar
  223. 223.
    Tan CY, Tsai WT. Effects of TiCl3-decorated MWCNTs addition on the dehydrogenation behavior and stability of LiAlH4. Int J Hydrogen Energy, 2014, 39: 20038–20044CrossRefGoogle Scholar
  224. 224.
    Liu X, Langmi HW, Beattie SD, et al. Ti-doped LiAlH4 for hydrogen storage: synthesis, catalyst loading and cycling performance. J Am Chem Soc, 2011, 133: 15593–15597CrossRefGoogle Scholar
  225. 225.
    Resan M, Hampton M, Lomness J, et al. Effects of various catalysts on hydrogen release and uptake characteristics of LiAlH. Int J Hydrogen Energy, 2005, 30: 1413–1416CrossRefGoogle Scholar
  226. 226.
    Pukazhselvan D, Fagg DP, Srivastava ON. One step high pressure mechanochemical synthesis of reversible alanates NaAlH4 and KAlH4. Int J Hydrogen Energy, 2015, 40: 4916–4924CrossRefGoogle Scholar
  227. 227.
    Ismail M, Zhao Y, Yu XB, et al. Significantly improved dehydrogenation of LiAlH4 catalysed with TiO2 nanopowder. Int J Hydrogen Energy, 2011, 36: 8327–8334CrossRefGoogle Scholar
  228. 228.
    Zhang X, Liu Y, Wang K, et al. Remarkably improved hydrogen storage properties of nanocrystalline TiO2-modified NaAlH4 and evolution of Ti-containing species during dehydrogenation/hydrogenation. Nano Res, 2015, 8: 533–545CrossRefGoogle Scholar
  229. 229.
    Fan Y, Yuan Z, Zou G, et al. Two-dimensional MXene/A-TiO2 composite with unprecedented catalytic activation for sodium alanate. Catal Today, 2018, 318: 167–174CrossRefGoogle Scholar
  230. 230.
    Xiao X, Fan X, Yu K, et al. Catalytic mechanism of new TiC-doped sodium alanate for hydrogen storage. J Phys Chem C, 2009, 113: 20745–20751CrossRefGoogle Scholar
  231. 231.
    Li L, Qiu F, Wang Y, et al. TiN catalyst for the reversible hydrogen storage performance of sodium alanate system. J Mater Chem, 2012, 22: 13782CrossRefGoogle Scholar
  232. 232.
    Bogdanović B, Felderhoff M, Kaskel S, et al. Improved hydrogen storage properties of Ti-doped sodium alanate using titanium nanoparticles as doping agents. Adv Mater, 2003, 15: 1012–1015CrossRefGoogle Scholar
  233. 233.
    Li L, Qiu F, Wang Y, et al. Improved dehydrogenation performances of TiB2-doped sodium alanate. Mater Chem Phys, 2012, 134: 1197–1202CrossRefGoogle Scholar
  234. 234.
    Li L, Qiu F, Wang Y, et al. Enhanced hydrogen storage properties of TiN-LiAlH4 composite. Int J Hydrogen Energy, 2013, 38: 3695–3701CrossRefGoogle Scholar
  235. 235.
    Bogdanović B, Felderhoff M, Pommerin A, et al. Advanced hydrogen-storage materials based on Sc-, Ce-, and Pr-doped NaAlH4. Adv Mater, 2006, 18: 1198–1201CrossRefGoogle Scholar
  236. 236.
    Bogdanović B, Felderhoff M, Pommerin A, et al. Cycling properties of Sc- and Ce-doped NaAlH4 hydrogen storage materials prepared by the one-step direct synthesis method. J Alloys Compd, 2009, 471: 383–386CrossRefGoogle Scholar
  237. 237.
    Cao Z, Ma X, Wang H, et al. Catalytic effect of ScCl3 on the dehydrogenation properties of LiAlH4. J Alloys Compd, 2018, 762: 73–79CrossRefGoogle Scholar
  238. 238.
    Fan X, Xiao X, Chen L, et al. Thermodynamics, kinetics, and modeling investigation on the dehydrogenation of CeAl4-doped NaAlH4 hydrogen storage material. J Phys Chem C, 2011, 115: 22680–22687CrossRefGoogle Scholar
  239. 239.
    Fan X, Xiao X, Chen L, et al. Enhanced hydriding-dehydriding performance of CeAl2-doped NaAlH4 and the evolvement of Cecontaining species in the cycling. J Phys Chem C, 2011, 115: 2537–2543CrossRefGoogle Scholar
  240. 240.
    Rossin A, Tuci G, Luconi L, et al. Metal-organic frameworks as heterogeneous catalysts in hydrogen production from lightweight inorganic hydrides. ACS Catal, 2017, 7: 5035–5045CrossRefGoogle Scholar
  241. 241.
    Mustafa NS, Yahya MS, Sazelee N, et al. Dehydrogenation properties and catalytic mechanism of the K2NiF6-doped NaAlH4 system. ACS Omega, 2018, 3: 17100–17107CrossRefGoogle Scholar
  242. 242.
    Varin RA, Zbroniec L, Czujko T, et al. The effects of nanonickel additive on the decomposition of complex metal hydride LiAlH4 (lithium alanate). Int J Hydrogen Energy, 2011, 36: 1167–1176CrossRefGoogle Scholar
  243. 243.
    Suttisawat Y, Rangsunvigit P, Kitiyanan B, et al. Catalytic effect of Zr and Hf on hydrogen desorption/absorption of NaAlH4 and LiAlH4. Int J Hydrogen Energy, 2007, 32: 1277–1285CrossRefGoogle Scholar
  244. 244.
    Sun T, Zhou B, Wang H, et al. The effect of doping rare-earth chloride dopant on the dehydrogenation properties of NaAlH4 and its catalytic mechanism. Int J Hydrogen Energy, 2008, 33: 2260–2267CrossRefGoogle Scholar
  245. 245.
    Zhai F, Li P, Sun A, et al. Significantly improved dehydrogenation of LiAlH4 destabilized by MnFe2O4 nanoparticles. J Phys Chem C, 2012, 116: 11939–11945CrossRefGoogle Scholar
  246. 246.
    Li Z, Zhai F, Wan Q, et al. Enhanced hydrogen storage properties of LiAlH4 catalyzed by CoFe2O4 nanoparticles. RSC Adv, 2014, 4: 18989–18997CrossRefGoogle Scholar
  247. 247.
    Zhang X, Wu R, Wang Z, et al. Preparation and catalytic activity of a novel nanocrystalline ZrO2@C composite for hydrogen storage in NaAlH4. Chem Asian J, 2016, 11: 3541–3549CrossRefGoogle Scholar
  248. 248.
    Huang Y, Li P, Wan Q, et al. Improved dehydrogenation performance of NaAlH4 using NiFe2O4 nanoparticles. J Alloys Compd, 2017, 709: 850–856CrossRefGoogle Scholar
  249. 249.
    Sulaiman NN, Ismail M. Catalytic effect of SrFe12O19 on the hydrogen storage properties of LiAlH4. Int J Hydrogen Energy, 2017, 42: 19126–19134CrossRefGoogle Scholar
  250. 250.
    Pitt MP, Vullum PE, Sørby MH, et al. Hydrogen absorption kinetics of the transition-metal-chloride-enhanced NaAlH4 system. J Phys Chem C, 2012, 116: 14205–14217CrossRefGoogle Scholar
  251. 251.
    Zaluska A, Zaluski L, Ström-Olsen JO. Sodium alanates for reversible hydrogen storage. J Alloys Compd, 2000, 298: 125–134CrossRefGoogle Scholar
  252. 252.
    Chen TT, Yang CH, Tsai WT. In-situ synchrotron X-ray diffraction study on the dehydrogenation behavior of NaAlH4 modified by multi-walled carbon nanotubes. Int J Hydrogen Energy, 2012, 37: 14285–14291CrossRefGoogle Scholar
  253. 253.
    Kumar LH, Rao CV, Viswanathan B. Catalytic effects of nitrogen-doped graphene and carbon nanotube additives on hydrogen storage properties of sodium alanate. J Mater Chem A, 2013, 1: 3355CrossRefGoogle Scholar
  254. 254.
    Hsu WC, Yang CH, Tsai WT. Catalytic effect of MWCNTs on the dehydrogenation behavior of LiAlH4. Int J Hydrogen Energy, 2014, 39: 927–933CrossRefGoogle Scholar
  255. 255.
    Suttisawat Y, Rangsunvigit P, Kitiyanan B, et al. Effect of co-dopants on hydrogen desorption/absorption of HfCl4- and TiO2-doped NaAlH4. Int J Hydrogen Energy, 2008, 33: 6195–6200CrossRefGoogle Scholar
  256. 256.
    Wang T, Wang J, Ebner AD, et al. Synergistic effects of bimetallic catalysis on the cycling behavior of NaAlH4 Co-doped with Zr and Fe. J Alloys Compd, 2012, 539: 242–248CrossRefGoogle Scholar
  257. 257.
    Schmidt T, Röntzsch L. Reversible hydrogen storage in Ti-Zr-codoped NaAlH4 under realistic operation conditions. J Alloys Compd, 2010, 496: L38–L40CrossRefGoogle Scholar
  258. 258.
    Wang P, Kang XD, Cheng HM. KH+Ti co-doped NaAlH4 for high-capacity hydrogen storage. J Appl Phys, 2005, 98: 074905CrossRefGoogle Scholar
  259. 259.
    Zhang X, Liu Y, Wang K, et al. Ultrafine nanocrystalline CeO2@C-containing NaAlH4 with fast kinetics and good reversibility for hydrogen storage. ChemSusChem, 2015, 8: 4180–4188CrossRefGoogle Scholar
  260. 260.
    Tan CY, Tsai WT. Catalytic and inhibitive effects of Pd and Pt decorated MWCNTs on the dehydrogenation behavior of LiAlH4. Int J Hydrogen Energy, 2015, 40: 10185–10193CrossRefGoogle Scholar
  261. 261.
    Zhang X, Ren Z, Lu Y, et al. Facile synthesis and superior catalytic activity of nano-TiN@N-C for hydrogen storage in NaAlH4. ACS Appl Mater Interfaces, 2018, 10: 15767–15777CrossRefGoogle Scholar
  262. 262.
    Choi J, Ha T, Park J, et al. Mechanochemical synthesis of Ce3Al11 powder and its catalytic effect on the hydrogen sorption properties of NaAlH4. J Alloys Compd, 2019, 784: 313–318CrossRefGoogle Scholar
  263. 263.
    Zhang X, Ren Z, Zhang X, et al. Triggering highly stable catalytic activity of metallic titanium for hydrogen storage in NaAlH4 by preparing ultrafine nanoparticles. J Mater Chem A, 2019, 7: 4651–4659CrossRefGoogle Scholar
  264. 264.
    Xiong R, Sang G, Yan X, et al. Separation and characterization of the active species in Ti-doped NaAlH4. Chem Commun, 2013, 49: 2046–2048CrossRefGoogle Scholar
  265. 265.
    Gabis I, Evard E, Voyt A, et al. Kinetics of decomposition of erbium hydride. J Alloys Compd, 2003, 356–357: 353–357CrossRefGoogle Scholar
  266. 266.
    Xiong R, Sang G, Zhang G, et al. Evolution of the active species and catalytic mechanism of Ti doped NaAlH4 for hydrogen storage. Int J Hydrogen Energy, 2017, 42: 6088–6095CrossRefGoogle Scholar
  267. 267.
    Hu J, Ren S, Witter R, et al. Catalytic influence of various cerium precursors on the hydrogen sorption properties of NaAlH4. Adv Energy Mater, 2012, 2: 560–568CrossRefGoogle Scholar
  268. 268.
    Gross KJ, Guthrie S, Takara S, et al. In-situ X-ray diffraction study of the decomposition of NaAlH4. J Alloys Compd, 2000, 297: 270–281CrossRefGoogle Scholar
  269. 269.
    Walters RT, Scogin JH. A reversible hydrogen storage mechanism for sodium alanate: The role of alanes and the catalytic effect of the dopant. J Alloys Compd, 2004, 379: 135–142CrossRefGoogle Scholar
  270. 270.
    Dathara GKP, Mainardi DS. Structure and dynamics of Ti-Al-H compounds in Ti-doped NaAlH4. Mol Simul, 2008, 34: 201–210CrossRefGoogle Scholar
  271. 271.
    Michel KJ, Ozoliņš V. Theory of mass transport in sodium ala-nate. J Mater Chem A, 2014, 2: 4438–4448CrossRefGoogle Scholar
  272. 272.
    Huang CK, Zhao YJ, Wang H, et al. AlH3-mediated mechanism in hydriding/dehydriding of NaAlH4. Int J Hydrogen Energy, 2011, 36: 9767–9771CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringUniversity of JinanJinanChina
  2. 2.Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of ChemistryNankai UniversityTianjinChina
  3. 3.Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and EngineeringTianjin University of TechnologyTianjinChina

Personalised recommendations