Advertisement

Synthesis of ultrathin Co2AlO4 nanosheets with oxygen vacancies for enhanced electrocatalytic oxygen evolution

  • Jiayang Wang (王佳阳)
  • Yongli Shen (申勇立)
  • Guijuan Wei (魏桂涓)
  • Wei Xi (习卫)
  • Xiaoming Ma (马小茗)
  • Weiqing Zhang (张维青)Email author
  • Peipei Zhu (朱培培)
  • Changhua An (安长华)Email author
Articles
  • 8 Downloads

Abstract

In this work, we reported the synthesis of two-dimensional spinel structure of ultrathin Co2AlO4 nanosheets via dealloying and subsequent annealing processes. Oxygen vacancy defects were further introduced into Co2AlO4 nanosheets by a mild solvothermal reduction method, resulting in large electrochemical surface area and high active site densities, making the related Co atoms get electrons, and producing more empty orbitals. The positive charge of Co and Al atoms adjacent to the O vacancies in VO-rich Co2AlO4 reduced significantly, that is, more electrons are concentrated on the Co and Al atoms. Those electrons closed to the Fermi level have a promoting effect during the H2O activation. As a result, the obtained ultrathin Co2AlO4 nanosheets with oxygen vacancies show a low overpotential of 280 mV at the current density of 10 mA cm−2 and a small Tafel slope of 70.98 mV dec−1. Moreover, it also displays a remarkable stability in alkaline solution, which is superior to most of the reported Co3O4 electrocatalysts. The present work paves a new way to achieve efficient new energetic materials for sustainable community.

Keywords

Co2AlO4 nanosheets oxygen vacancies oxygen evolution 

氧空位超薄Co2AlO4纳米片的合成及其增强电催化氧析出反应

摘要

本文报道了通过脱合金和后续退火工艺合成一种新型超薄二维尖晶石结构的Co2AlO4纳米片. 通过温和的溶剂热还原法将氧空位缺陷引入Co2AlO4纳米片中, 使得电化学表面积增大, 活性位密度变高, 钴原子得到电子而产生更多的空轨道. 这些空轨道有利于接受水分子中氧原子的孤对电子, 促进水分子的活化. 含有氧空位的超薄Co2AlO4纳米片在10 mA cm−2时的过电位为280 mV, 塔菲尔斜率为70.98 mV dec−1. 此外, 其在碱性溶液中也表现出显著的稳定性, 并且优于多数已报道的Co3O4电催化剂. 该工作为制备高效的可持续新能源材料提供了新思路.

Notes

Acknowledgements

The authors gratefully acknowledge the financial support by the National Natural Science Foundation of China (21771137), the Natural Science Foundation of Tianjin City (18JCJQJC47700), 111 project (D17003) and the Training Project of Innovation Team of Colleges and Universities in Tianjin (TD13-5020)

Supplementary material

40843_2019_9490_MOESM1_ESM.pdf (1.6 mb)
Synthesis of ultrathin Co2AlO4 nanosheets with oxygen vacancies for enhanced electrocatalytic oxygen evolution

References

  1. 1.
    Tan C, Cao X, Wu XJ, et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem Rev, 2017, 117: 6225–6331CrossRefGoogle Scholar
  2. 2.
    Lin H, Chen L, Lu X, et al. Two-dimensional titanium carbide MXenes as efficient non-noble metal electrocatalysts for oxygen reduction reaction. Sci China Mater, 2018, 62: 662–670CrossRefGoogle Scholar
  3. 3.
    Duan X, Wang C, Pan A, et al. Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges. Chem Soc Rev, 2015, 44: 8859–8876CrossRefGoogle Scholar
  4. 4.
    Sun S, Sun Y, Zhou Y, et al. Shifting oxygen charge towards octahedral metal: a way to promote water oxidation on cobalt spinel oxides. Angew Chem Int Ed, 2019, 58: 6042–6047CrossRefGoogle Scholar
  5. 5.
    Dong R, Liu W, Hao J. Soft vesicles in the synthesis of hard materials. Acc Chem Res, 2012, 45: 504–513CrossRefGoogle Scholar
  6. 6.
    Zhang L, Yang C, Hu N, et al. Steamed water engineering mechanically robust graphene films for high-performance electrochemical capacitive energy storage. Nano Energy, 2016, 26: 668–676CrossRefGoogle Scholar
  7. 7.
    Zhang Z, Chen P, Duan X, et al. Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and super-lattices. Science, 2017, 357: 788–792CrossRefGoogle Scholar
  8. 8.
    Khayum MA, Kandambeth S, Mitra S, et al. Chemically delaminated free-standing ultrathin covalent organic nanosheets. Angew Chem Int Ed, 2016, 55: 15604–15608CrossRefGoogle Scholar
  9. 9.
    Wang X, Chi C, Zhang K, et al. Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation. Nat Commun, 2017, 8: 14460CrossRefGoogle Scholar
  10. 10.
    Cliffe MJ, Castillo-Martínez E, Wu Y, et al. Metal-organic nanosheets formed via defect-mediated transformation of a hafnium metal—organic framework. J Am Chem Soc, 2017, 139: 5397–5404CrossRefGoogle Scholar
  11. 11.
    Tan C, Zhang H. Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials. Nat Commun, 2015, 6: 7873CrossRefGoogle Scholar
  12. 12.
    Dai W, Shao F, Szczerbiński J, et al. Synthesis of a two-dimensional covalent organic monolayer through dynamic imine chemistry at the air/water interface. Angew Chem Int Ed, 2016, 55: 213–217CrossRefGoogle Scholar
  13. 13.
    Wang HY, Hung SF, Chen HY, et al. In operando identification of geometrical-site-dependent water oxidation activity of spinel Co3O4. J Am Chem Soc, 2016, 138: 36–39CrossRefGoogle Scholar
  14. 14.
    Wang W, Kuai L, Cao W, et al. Mass-production of mesoporous MnCo2O4 spinels with manganese(IV)- and cobalt(II)-rich surfaces for superior bifunctional oxygen electrocatalysis. Angew Chem Int Ed, 2017, 56: 14977–14981CrossRefGoogle Scholar
  15. 15.
    Ouyang T, Ye YQ, Wu CY, et al. Heterostructures composed of n-doped carbon nanotubes encapsulating cobalt and β-Mo2C nano-particles as bifunctional electrodes for water splitting. Angew Chem Int Ed, 2019, 58: 4923–4928CrossRefGoogle Scholar
  16. 16.
    Kim MS, Lim E, Kim S, et al. General synthesis of N-doped macroporous graphene-encapsulated mesoporous metal oxides and their application as new anode materials for sodium-ion hybrid supercapacitors. Adv Funct Mater, 2017, 27: 1603921CrossRefGoogle Scholar
  17. 17.
    Gerken JB, Chen JYC, Massé RC, et al. Development of an O2-sensitive fluorescence-quenching assay for the combinatorial discovery of electrocatalysts for water oxidation. Angew Chem Int Ed, 2012, 51: 6676–6680CrossRefGoogle Scholar
  18. 18.
    Gerken JB, Shaner SE, Massé RC, et al. A survey of diverse earth abundant oxygen evolution electrocatalysts showing enhanced activity from Ni-Fe oxides containing a third metal. Energy Environ Sci, 2014, 7: 2376–2382CrossRefGoogle Scholar
  19. 19.
    Kleiman-Shwarsctein A, Huda MN, Walsh A, et al. Electro-deposited aluminum-doped a-Fe2O3 photoelectrodes: experiment and theory. Chem Mater, 2010, 22: 510–517CrossRefGoogle Scholar
  20. 20.
    Gupta A, Chemelewski WD, Buddie Mullins C, et al. High-rate oxygen evolution reaction on Al-doped LiNiO2. Adv Mater, 2015, 27: 6063–6067CrossRefGoogle Scholar
  21. 21.
    Huang ZF, Song J, Du Y, et al. Chemical and structural origin of lattice oxygen oxidation in Co-Zn oxyhydroxide oxygen evolution electrocatalysts. Nat Energy, 2019, 4: 329–338CrossRefGoogle Scholar
  22. 22.
    Xi X, Nie Z, Ma L, et al. Synthesis and characterization of ultrafine Co2AlO4 pigment by freeze—drying. Powder Tech, 2012, 226: 114–116CrossRefGoogle Scholar
  23. 23.
    Casado PG, Rasines I. The series of spinels Co3−sAlsO4 (0<s<2): Study of Co2AlO4. J Solid State Chem, 1984, 52: 187–190CrossRefGoogle Scholar
  24. 24.
    Liu Y, Cheng H, Lyu M, et al. Low overpotential in vacancy-rich ultrathin CoSe2 nanosheets for water oxidation. J Am Chem Soc, 2014, 136: 15670–15675CrossRefGoogle Scholar
  25. 25.
    Xu L, Jiang Q, Xiao Z, et al. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew Chem Int Ed, 2016, 55: 5277–5281CrossRefGoogle Scholar
  26. 26.
    Xiang K, Xu Z, Qu T, et al. Two dimensional oxygen-vacancy-rich Co3O4 nanosheets with excellent supercapacitor performances. Chem Commun, 2017, 53: 12410–12413CrossRefGoogle Scholar
  27. 27.
    Wei G, He J, Zhang W, et al. Rational design of Co(II) dominant and oxygen vacancy defective CuCo2O4@CQDs hollow spheres for enhanced overall water splitting and supercapacitor performance. Inorg Chem, 2018, 57: 7380–7389CrossRefGoogle Scholar
  28. 28.
    Zheng X, Cao Y, Han X, et al. Pt embedded Ni3Se2@NiOOH core-shell dendrite-like nanoarrays on nickel as bifunctional electro-catalysts for overall water splitting. Sci China Mater, 2019, 62: 1096–1104CrossRefGoogle Scholar
  29. 29.
    Xu C, Liu Y, Zhou C, et al. An in situ dealloying and oxidation route to Co3O4 nanosheets and their ambient-temperature CO oxidation activity. ChemCatChem, 2011, 3: 399–407CrossRefGoogle Scholar
  30. 30.
    Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77: 3865–3868CrossRefGoogle Scholar
  31. 31.
    Delley B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys, 1990, 92: 508–517CrossRefGoogle Scholar
  32. 32.
    Delley B. From molecules to solids with the DMol3 approach. J Chem Phys, 2000, 113: 7756–7764CrossRefGoogle Scholar
  33. 33.
    Cai Z, Bi Y, Hu E, et al. Single-crystalline ultrathin Co3O4 nanosheets with massive vacancy defects for enhanced electro-catalysis. Adv Energy Mater, 2018, 8: 1701694CrossRefGoogle Scholar
  34. 34.
    Sevenhans W, Gijs M, Bruynseraede Y, et al. Cumulative disorder and X-ray line broadening in multilayers. Phys Rev B, 1986, 34: 5955–5958CrossRefGoogle Scholar
  35. 35.
    Ling T, Yan DY, Jiao Y, et al. Engineering surface atomic structure of single-crystal cobalt (II) oxide nanorods for superior electro-catalysis. Nat Commun, 2016, 7: 12876CrossRefGoogle Scholar
  36. 36.
    Karvonen L, Valkeapaa M, Liu RS, et al. O-K and Co-L XANES study on oxygen intercalation in perovskite SrCoO3−δ. Chem Mater, 2010, 22: 70–76CrossRefGoogle Scholar
  37. 37.
    Petrie JR, Mitra C, Jeen H, et al. Strain control of oxygen vacancies in epitaxial strontium cobaltite films. Adv Funct Mater, 2016, 26: 1564–1570CrossRefGoogle Scholar
  38. 38.
    Mo S, Li S, Li J, et al. Rich surface Co(III) ions-enhanced Co nanocatalyst benzene/toluene oxidation performance derived from CoIICoIII layered double hydroxide. Nanoscale, 2016, 8: 15763–15773CrossRefGoogle Scholar
  39. 39.
    Zhang Q, Mo S, Chen B, et al. Hierarchical Co3O4 nanostructures in-situ grown on 3D nickel foam towards toluene oxidation. Mol Catal, 2018, 454: 12–20CrossRefGoogle Scholar
  40. 40.
    Xie R, Fan G, Yang L, et al. Solvent-free oxidation of ethylbenzene over hierarchical flower-like core-shell structured Co-based mixed metal oxides with significantly enhanced catalytic performance. Catal Sci Technol, 2015, 5: 540–548CrossRefGoogle Scholar
  41. 41.
    Xiao Z, Wang Y, Huang YC, et al. Filling the oxygen vacancies in Co3O4 with phosphorus: an ultra-efficient electrocatalyst for overall water splitting. Energy Environ Sci, 2017, 10: 2563–2569CrossRefGoogle Scholar
  42. 42.
    Liu Z, Yu C, Niu Y, et al. Graphite-graphene architecture stabilizing ultrafine Co3O4 nanoparticles for superior oxygen evolution. Carbon, 2018, 140: 17–23CrossRefGoogle Scholar
  43. 43.
    Guan J, Zhang Z, Ji J, et al. Hydrothermal synthesis of highly dispersed Co3O4 nanoparticles on biomass-derived nitrogen-doped hierarchically porous carbon networks as an efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions. ACS Appl Mater Interfaces, 2017, 9: 30662–30669CrossRefGoogle Scholar
  44. 44.
    Wei X, Li Y, Peng H, et al. A novel functional material of Co3O4/Fe2O3 nanocubes derived from a MOF precursor for high-performance electrochemical energy storage and conversion application. Chem Eng J, 2019, 355: 336–340CrossRefGoogle Scholar
  45. 45.
    Zhou JJ, Han X, Tao K, et al. Shish-kebab type MnCo2O4@Co3O4 nanoneedle arrays derived from MnCo-LDH@ZIF-67 for high-performance supercapacitors and efficient oxygen evolution reaction. Chem Eng J, 2018, 354: 875–884CrossRefGoogle Scholar
  46. 46.
    Li HC, Zhang YJ, Hu X, et al. Metal-organic framework templated Pd@PdO-Co3O4 nanocubes as an efficient bifunctional oxygen electrocatalyst. Adv Energy Mater, 2018, 8: 1702734CrossRefGoogle Scholar
  47. 47.
    Young PR. Element abundance ratios in the quiet sun transition region. Astrophys J, 2018, 855: 15CrossRefGoogle Scholar
  48. 48.
    Li Y, Li FM, Meng XY, et al. Ultrathin Co3O4 nanomeshes for the oxygen evolution reaction. ACS Catal, 2018, 8: 1913–1920CrossRefGoogle Scholar
  49. 49.
    Yao L, Zhang N, Wang Y, et al. Facile formation of 2D Co2P@Co3O4 microsheets through in-situ toptactic conversion and surface corrosion: Bifunctional electrocatalysts towards overall water splitting. J Power Sources, 2018, 374: 142–148CrossRefGoogle Scholar
  50. 50.
    Xu H, Wei J, Zhang M, et al. Heterogeneous Co(OH)2 nanoplates/Co3O4 nanocubes enriched with oxygen vacancies enable efficient oxygen evolution reaction electrocatalysis. Nanoscale, 2018, 10: 18468–18472CrossRefGoogle Scholar
  51. 51.
    Liu H, Ma FX, Xu CY, et al. Sulfurizing-induced hollowing of Co9S8 microplates with nanosheet units for highly efficient water oxidation. ACS Appl Mater Interfaces, 2017, 9: 11634–11641CrossRefGoogle Scholar
  52. 52.
    Pei Z, Xu L, Xu W. Hierarchical honeycomb-like Co3O4 pores coating on CoMoO4 nanosheets as bifunctional efficient electro-catalysts for overall water splitting. Appl SurfSci, 2018, 433: 256–263CrossRefGoogle Scholar
  53. 53.
    Liu J, Wang J, Zhang B, et al. Mutually beneficial Co3O4@MoS2 heterostructures as a highly efficient bifunctional catalyst for electrochemical overall water splitting. J Mater Chem A, 2018, 6: 2067–2072CrossRefGoogle Scholar
  54. 54.
    Jadhav AR, Puguan JMC, Kim H. Microwave-assisted synthesis of a stainless steel mesh-supported Co3O4 microrod array as a highly efficient catalyst for electrochemical water oxidation. ACS Sustain Chem Eng, 2017, 5: 11069–11079CrossRefGoogle Scholar
  55. 55.
    Xu W, Xie W, Wang Y. Co3O4−x-carbon@Fe2−yCoy, O3 hetero-structural hollow polyhedrons for the oxygen evolution reaction. ACS Appl Mater Interfaces, 2017, 9: 28642–28649CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jiayang Wang (王佳阳)
    • 1
  • Yongli Shen (申勇立)
    • 2
  • Guijuan Wei (魏桂涓)
    • 1
  • Wei Xi (习卫)
    • 2
  • Xiaoming Ma (马小茗)
    • 1
  • Weiqing Zhang (张维青)
    • 2
    Email author
  • Peipei Zhu (朱培培)
    • 1
  • Changhua An (安长华)
    • 1
    • 2
    Email author
  1. 1.Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical EngineeringTianjin University of TechnologyTianjinChina
  2. 2.Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and EngineeringTianjin University of TechnologyTianjinChina

Personalised recommendations