Advertisement

Controlled one step thinning and doping of two-dimensional transition metal dichalcogenides

  • Jie Ren (任洁)
  • Changjiu Teng (腾长久)
  • Zhengyang Cai (蔡正阳)
  • Haiyang Pan (潘海洋)
  • Jiaman Liu (刘佳曼)
  • Yue Zhao (赵悦)
  • Bilu Liu (刘碧录)Email author
Articles
  • 38 Downloads

Abstract

Two-dimensional (2D) transition metal dichalcogenides (TMDCs) have drawn intensive attention due to their ultrathin feature with excellent electrostatic gating capability, and unique thickness-dependent electronic and optical properties. Controlling the thickness and doping of 2D TMDCs are crucial toward their future applications. Here, we report an effective HAuCl4 treatment method and achieve simultaneous thinning and doping of various TMDCs in one step. We find that the HAuCl4 treatment not only thins thick MoS2 flakes into few layers or even monolayers, but also simultaneously tunes MoS2 into p-type. The effects of various parameters in the process have been studied systematically, and an Au intercalation assisted thinning and doping mechanism is proposed. Importantly, this method also works for other typical TMDCs, including WS2, MoSe2 and WSe2, showing good universality. Electrical transport measurements of field-effect transistors (FETs) based on MoS2 flakes show a big increase of On/Off current ratios (from 102 to 107) after the HAuCl4 treatment. Meanwhile, the subthreshold voltages of the MoS2 FETs shift from −60 to +27 V after the HAuCl4 treatment, with a p-type doping behavior. This study provides an effective and simple method to control the thickness and doping properties of 2D TMDCs, paving a way for their applications in high performance electronics and optoelectronics.

Keywords

2D materials transition metal dichalcogenides MoS2 thinning doping field-effect transistor HAuCl4 

一步法可控减薄和掺杂二维过渡金属硫族化合物

摘要

二维过渡金属硫族化合物(TMDCs)具有超薄结构, 且其电 学、光学性质对厚度具有很强的依赖性, 近年来备受研究者们的 广泛关注. 如何控制TMDCs的厚度和掺杂, 是其未来应用的关键 所在. 本文提出了一种简单高效的HAuCl4处理方法, 实现了 TMDCs的一步法可控减薄和掺杂, 可以制备出薄层及单层TMDCs, 同时实现了对MoS2的可控p型掺杂. 本文系统研究了关键实验参数 的影响, 并基于此提出了金插层辅助减薄和掺杂TMDCs的机理. 研 究还发现该方法具有普适性, 可以实现对多种TMDCs的可控减薄, 包括MoSe2, WS2, WSe2. 电学测试表明, HAuCl4处理后的MoS2纳米 片具有更高的场效应晶体管开关比, 其阈值电压向正电压方向偏 移. 本工作提出的这种控制二维TMDCs材料厚度和掺杂的方法, 对其未来在高性能电子和光电器件的应用具有一定参考价值.

Notes

Acknowledgements

We acknowledge the support from the National Natural Science Foundation of China (51722206 and 11674150), the Youth 1000-Talent Program of China, the Economic, Trade and Information Commission of Shenzhen Municipality for the “2017 Graphene Manufacturing Innovation Center Project” (201901171523), Shenzhen Basic Research Project (JCYJ20170307140956657 and JCYJ20160613160524999), Guangdong Innovative and Entrepreneurial Research Team Program (2017ZT07C341 and 2016ZT06D348), and the Development and Reform Commission of Shenzhen Municipality for the development of the “Low-Dimensional Materials and Devices” discipline.

Supplementary material

40843_2019_9461_MOESM1_ESM.pdf (1.9 mb)
Controlled one step thinning and doping of two-dimensional transition metal dichalcogenides

References

  1. 1.
    Cai Z, Liu B, Zou X, et al. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem Rev, 2018, 118: 6091–6133CrossRefGoogle Scholar
  2. 2.
    Geim AK, Novoselov KS. The rise of graphene. Nat Mater, 2007, 6: 183–191CrossRefGoogle Scholar
  3. 3.
    Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306: 666–669CrossRefGoogle Scholar
  4. 4.
    Tan C, Cao X, Wu XJ, et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem Rev, 2017, 117: 6225–6331CrossRefGoogle Scholar
  5. 5.
    Desai SB, Madhvapathy SR, Sachid AB, et al. MoS2 transistors with 1-nanometer gate lengths. Science, 2016, 354: 99–102CrossRefGoogle Scholar
  6. 6.
    Ross JS, Klement P, Jones AM, et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions. Nat Nanotech, 2014, 9: 268–272CrossRefGoogle Scholar
  7. 7.
    Frisenda R, Molina-Mendoza AJ, Mueller T, et al. Atomically thin p–n junctions based on two-dimensional materials. Chem Soc Rev, 2018, 47: 3339–3358CrossRefGoogle Scholar
  8. 8.
    Dobusch L, Schuler S, Perebeinos V, et al. Thermal light emission from monolayer MoS2. Adv Mater, 2017, 29: 1701304CrossRefGoogle Scholar
  9. 9.
    Liu J, Cao H, Jiang B, et al. Newborn 2D materials for flexible energy conversion and storage. Sci China Mater, 2016, 59: 459–474Google Scholar
  10. 10.
    Wachter S, Polyushkin DK, Bethge O, et al. A microprocessor based on a two-dimensional semiconductor. Nat Commun, 2017, 8: 14948CrossRefGoogle Scholar
  11. 11.
    Scheuschner N, Ochedowski O, Kaulitz AM, et al. Photoluminescence of freestanding single- and few-layer MoS2. Phys Rev B, 2014, 89: 124506CrossRefGoogle Scholar
  12. 12.
    Mak KF, Lee C, Hone J, et al. Atomically thin MoS2: A new direct-gap semiconductor. Phys Rev Lett, 2010, 105: 136805–136811CrossRefGoogle Scholar
  13. 13.
    Desai SB, Madhvapathy SR, Amani M, et al. Gold-mediated exfoliation of ultralarge optoelectronically-perfect monolayers. Adv Mater, 2016, 28: 4053–4058CrossRefGoogle Scholar
  14. 14.
    Cheiwchanchamnangij T, Lambrecht WRL. Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2. Phys Rev B, 2012, 85: 205302CrossRefGoogle Scholar
  15. 15.
    Eda G, Yamaguchi H, Voiry D, et al. Photoluminescence from chemically exfoliated MoS2. Nano Lett, 2011, 11: 5111–5116CrossRefGoogle Scholar
  16. 16.
    Varghese A, Sharma CH, Thalakulam M. Topography preserved microwave plasma etching for top-down layer engineering in MoS2 and other van der Waals materials. Nanoscale, 2017, 9: 3818–3825CrossRefGoogle Scholar
  17. 17.
    Wang D, Wang Y, Chen X, et al. Layer-by-layer thinning of two-dimensional MoS2 films by using a focused ion beam. Nanoscale, 2016, 8: 4107–4112CrossRefGoogle Scholar
  18. 18.
    Liu N, Kim P, Kim JH, et al. Large-area atomically thin MoS2 nanosheets prepared using electrochemical exfoliation. ACS Nano, 2014, 8: 6902–6910CrossRefGoogle Scholar
  19. 19.
    Li HM, Lee D, Qu D, et al. Ultimate thin vertical p-n junction composed of two-dimensional layered molybdenum disulfide. Nat Commun, 2015, 6: 6564CrossRefGoogle Scholar
  20. 20.
    Mouri S, Miyauchi Y, Matsuda K. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett, 2013, 13: 5944–5948CrossRefGoogle Scholar
  21. 21.
    Tarasov A, Zhang S, Tsai MY, et al. Controlled doping of large-area trilayer MoS2 with molecular reductants and oxidants. Adv Mater, 2015, 27: 1175–1181CrossRefGoogle Scholar
  22. 22.
    Zhang X, Qiao XF, Shi W, et al. Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from mono-layer, multilayer to bulk material. Chem Soc Rev, 2015, 44: 2757–2785CrossRefGoogle Scholar
  23. 23.
    Chen KC, Chu TW, Wu CR, et al. Atomic layer etchings of transition metal dichalcogenides with post healing procedures: Equivalent selective etching of 2D crystal hetero-structures. 2D Mater, 2017, 4: 034001CrossRefGoogle Scholar
  24. 24.
    Magda GZ, Pető J, Dobrik G, et al. Exfoliation of large-area transition metal chalcogenide single layers. Sci Rep, 2015, 5: 14714CrossRefGoogle Scholar
  25. 25.
    Luo Y, Tang L, Khan U, et al. Morphology and surface chemistry engineering toward pH-universal catalysts for hydrogen evolution at high current density. Nat Commun, 2019, 10: 269CrossRefGoogle Scholar
  26. 26.
    Dhall R, Neupane MR, Wickramaratne D, et al. Direct bandgap transition in many-layer MoS2 by plasma-induced layer decoupling. Adv Mater, 2015, 27: 1573–1578CrossRefGoogle Scholar
  27. 27.
    Wi S, Kim H, Chen M, et al. Enhancement of photovoltaic response in multilayer MoS2 induced by plasma doping. ACS Nano, 2014, 8: 5270–5281CrossRefGoogle Scholar
  28. 28.
    Gao J, Kim YD, Liang L, et al. Transition-metal substitution doping in synthetic atomically thin semiconductors. Adv Mater, 2016, 28: 9735–9743CrossRefGoogle Scholar
  29. 29.
    Sun L, Zheng J. Optical visualization of MoS2 grain boundaries by gold deposition. Sci China Mater, 2018, 61: 1154–1158CrossRefGoogle Scholar
  30. 30.
    Siao MD, Shen WC, Chen RS, et al. Two-dimensional electronic transport and surface electron accumulation in MoS2. Nat Commun, 2018, 9: 1442CrossRefGoogle Scholar
  31. 31.
    Kiriya D, Zhou Y, Nelson C, et al. Oriented growth of gold nanowires on MoS2. Adv Funct Mater, 2015, 25: 6257–6264CrossRefGoogle Scholar
  32. 32.
    Tonndorf P, Schmidt R, Böttger P, et al. Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2. Opt Express, 2013, 21: 4908–4916CrossRefGoogle Scholar
  33. 33.
    Cunningham PD, Hanbicki AT, McCreary KM, et al. Photo-induced bandgap renormalization and exciton binding energy reduction in WS2. ACS Nano, 2017, 11: 12601–12608CrossRefGoogle Scholar
  34. 34.
    Jin Y, Keum DH, An SJ, et al. A van der Waals homojunction: Ideal p-n diode behavior in MoSe2. Adv Mater, 2015, 27: 5534–5540CrossRefGoogle Scholar
  35. 35.
    Shaw JC, Zhou H, Chen Y, et al. Chemical vapor deposition growth of monolayer MoSe2 nanosheets. Nano Res, 2015, 7: 511–517CrossRefGoogle Scholar
  36. 36.
    Xia J, Huang X, Liu LZ, et al. CVD synthesis of large-area, highly crystalline MoSe2 atomic layers on diverse substrates and application to photodetectors. Nanoscale, 2014, 6: 8949–8955CrossRefGoogle Scholar
  37. 37.
    Liu B, Ma Y, Zhang A, et al. High-performance WSe2 field-effect transistors via controlled formation of in-plane heterojunctions. ACS Nano, 2016, 10: 5153–5160CrossRefGoogle Scholar
  38. 38.
    Zhao W, Ghorannevis Z, Chu L, et al. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano, 2013, 7: 791–797CrossRefGoogle Scholar
  39. 39.
    Liu B, Köpf M, Abbas AN, et al. Black arsenic-phosphorus: Layered anisotropic infrared semiconductors with highly tunable compositions and properties. Adv Mater, 2015, 27: 4423–4429CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jie Ren (任洁)
    • 1
  • Changjiu Teng (腾长久)
    • 1
  • Zhengyang Cai (蔡正阳)
    • 1
  • Haiyang Pan (潘海洋)
    • 2
  • Jiaman Liu (刘佳曼)
    • 1
  • Yue Zhao (赵悦)
    • 2
  • Bilu Liu (刘碧录)
    • 1
    Email author
  1. 1.Shenzhen Geim Graphene Center (SGC), Tsinghua-Berkeley Shenzhen InstituteTsinghua UniversityShenzhenChina
  2. 2.Shenzhen Institute for Quantum Science and Engineering and Department of PhysicsSouth University of Science and Technology of ChinaShenzhenChina

Personalised recommendations