Advertisement

From energetic cobalt pentazolate to cobalt@nitrogen-doped carbons as efficient electrocatalysts for oxygen reduction

  • Binshen Wang (王滨燊)
  • Yousong Liu (刘有松)
  • Mucong Deng (邓沐聪)
  • Jin Luo (罗进)
  • Guangcheng Yang (杨光成)
  • Shiguo Zhang (张世国)
  • Jiaheng Zhang (张嘉恒)Email author
  • Qinghua Zhang (张庆华)Email author
Articles
  • 28 Downloads

Abstract

Cyclopentazolate anions (cyclo-N5) have been receiving ever-increasing attention as component of energetic explosives since recent fulfilment of the first stable sample in solid phase and ambient conditions. Herein, we present a new strategy to utilize deflagration reactions of cobalt pentazolate in combination with explosive poly(ionic liquid) (EPIL) for the preparation of Co@N-doped carbon materials with homogeneously distributed cobalt nanoparticle encapsulated by the layers of N-doped carbon sheets. The resultant 5%Co (N5)2-EPIL-900 exhibits high electrocatalytic activities, excellent stability and tolerance to CH3OH towards oxygen reduction reaction (ORR). Moreover, the present approach provides a novel routine for preparation of functional materials from energetic and newly-emerging cyclo-N5-derived compounds.

Keywords

pentazole ionic liquids carbon materials deflagration oxygen reduction reaction 

含能五唑化钴衍生钴修饰氮掺杂碳材料的制备及其催化氧还原反应性能研究

摘要

自首例含有五唑阴离子(cyclo-N5)的稳定固态聚氮化合物被报道以来, 探索新兴五唑化合物的制备与应用吸引着科学家们的极大兴趣. 本文发展了一种以五唑化钴与含能聚离子液体为前驱体, 利用独特的爆燃反应制备钴修饰氮掺杂碳材料的新方法. 凭借前驱体的含能特性, 所得材料具有典型的核-壳纳米结构, 氮掺杂碳层包裹的钴纳米颗粒分布均匀. 材料5%Co(N5)2-EPIL-900在氧还原反应中展现出优异的电催化性能、稳定性和抗甲醇毒化能力. 本工作为以含能五唑化合物为前驱体高效制备功能碳材料提供了新途径.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21703218 and 21875228), and Shenzhen Science and Technology Innovation Committee (JCYJ20151013162733704).

Supplementary material

40843_2019_9459_MOESM1_ESM.pdf (3.7 mb)
From energetic cobalt pentazolate to cobalt@nitrogen-doped carbons as efficient electrocatalysts for oxygen reduction

References

  1. 1.
    Zhang C, Sun C, Hu B, et al. Synthesis and characterization of the pentazolate anion cyclo-N5 in (N5)6(H3O)3(NH4)4Cl. Science, 2017, 355: 374–376CrossRefGoogle Scholar
  2. 2.
    Xu Y, Wang Q, Shen C, et al. A series of energetic metal pentazolate hydrates. Nature, 2017, 549: 78–81CrossRefGoogle Scholar
  3. 3.
    Wang P, Xu Y, Lin Q, et al. Recent advances in the syntheses and properties of polynitrogen pentazolate anion cyclo-N5 and its derivatives. Chem Soc Rev, 2018, 47: 7522–7538CrossRefGoogle Scholar
  4. 4.
    Sun C, Zhang C, Jiang C, et al. Synthesis of AgN5 and its extended 3D energetic framework. Nat Commun, 2018, 9: 1269–1275CrossRefGoogle Scholar
  5. 5.
    Zhang C, Yang C, Hu B, et al. A symmetric Co(N5)2(H2O)4·4 H2O high-nitrogen compound formed by Cobalt(II) cation trapping of a cyclo-N5 anion. Angew Chem Int Ed, 2017, 56: 4512–4514CrossRefGoogle Scholar
  6. 6.
    Zhang W, Wang K, Li J, et al. Stabilization of the pentazolate anion in a zeolitic architecture with Na20N60 and Na24N60 nanocages. Angew Chem Int Ed, 2018, 57: 2592–2595CrossRefGoogle Scholar
  7. 7.
    Xu Y, Wang P, Lin Q, et al. A carbon-free inorganic-metal complex consisting of an all-nitrogen pentazole anion, a Zn(II) cation and H2O. Dalton Trans, 2017, 46: 14088–14093CrossRefGoogle Scholar
  8. 8.
    Wang PC, Xu YG, Wang Q, et al. Self-assembled energetic coordination polymers based on multidentate pentazole cyclo-N5 . Sci China Mater, 2019, 62: 122–129CrossRefGoogle Scholar
  9. 9.
    Xu Y, Wang P, Lin Q, et al. Self-assembled energetic 3D metal organic framework [Na8(N5)8(H2O)3]n based on cyclo-N5 . Dalton Trans, 2018, 47: 1398–1401CrossRefGoogle Scholar
  10. 10.
    Yang C, Zhang C, Zheng Z, et al. Synthesis and characterization of cyclo-pentazolate salts of NH4 +, NH3OH+, N2H5 +, C(NH2)3 +, and N(CH3)4 +. J Am Chem Soc, 2018, 140: 16488–16494CrossRefGoogle Scholar
  11. 11.
    Wang P, Lin Q, Xu Y, et al. Pentazole anion cyclo-N5 : a rising star in nitrogen chemistry and energetic materials. Sci China Chem, 2018, 61: 1355–1358CrossRefGoogle Scholar
  12. 12.
    Li J, Wang K, Song S, et al. [LiNa(N5)2(H2O)4]H2O: a novel heterometallic cyclo-N5 framework with helical chains. Sci China Mater, 2019, 62: 283–288CrossRefGoogle Scholar
  13. 13.
    Liu Y, Gao B, Qiao Z, et al. Gram-scale synthesis of graphene quantum dots from single carbon atoms growth via energetic material deflagration. Chem Mater, 2015, 27: 4319–4327CrossRefGoogle Scholar
  14. 14.
    Liu Y, Ouyang S, Guo W, et al. Ultrafast one-step synthesis of N and Ti3+ codoped TiO2 nanosheets via energetic material deflagration. Nano Res, 2018, 11: 4735–4743CrossRefGoogle Scholar
  15. 15.
    Liu Y, Huang B, Peng S, et al. Deflagration synthesis of nitrogen/fluorine co-doped hollow carbon nanoparticles with excellent oxygen reduction performance. Inorg Chem Front, 2018, 5: 1307–1313CrossRefGoogle Scholar
  16. 16.
    Dahan M, Komarala E, Fadeev L, et al. Methane dry reforming catalyst prepared by the co-deflagration of high-nitrogen energetic complexes. J Mater Chem A, 2019, 7: 141–149CrossRefGoogle Scholar
  17. 17.
    Wang B, Feng Y, Qi X, et al. Designing explosive poly (ionic liquid)s as novel energetic polymers. Chem Eur J, 2018, 24: 15897–15902CrossRefGoogle Scholar
  18. 18.
    Yuan J, Giordano C, Antonietti M. Ionic liquid monomers and polymers as precursors of highly conductive, mesoporous, graphitic carbon nanostructures. Chem Mater, 2010, 22: 5003–5012CrossRefGoogle Scholar
  19. 19.
    Fellinger TP, Thomas A, Yuan J, et al. 25th anniversary article: “cooking carbon with salt”: carbon materials and carbonaceous frameworks from ionic liquids and poly(ionic liquid)s. Adv Mater, 2013, 25: 5838–5855CrossRefGoogle Scholar
  20. 20.
    Zhang S, Dokko K, Watanabe M. Carbon materialization of ionic liquids: from solvents to materials. Mater Horiz, 2015, 2: 168–197CrossRefGoogle Scholar
  21. 21.
    Gong J, Antonietti M, Yuan J. Poly(ionic liquid)-derived carbon with site-specific N-doping and biphasic heterojunction for enhanced CO2 capture and sensing. Angew Chem Int Ed, 2017, 56: 7557–7563CrossRefGoogle Scholar
  22. 22.
    Gong J, Lin H, Antonietti M, et al. Nitrogen-doped porous carbon nanosheets derived from poly(ionic liquid)s: hierarchical pore structures for efficient CO2 capture and dye removal. J Mater Chem A, 2016, 4: 7313–7321CrossRefGoogle Scholar
  23. 23.
    Zhang P, Yuan J, Fellinger TP, et al. Improving hydrothermal carbonization by using poly(ionic liquid)s. Angew Chem Int Ed, 2013, 52: 6028–6032CrossRefGoogle Scholar
  24. 24.
    Balach J, Wu H, Polzer F, et al. Poly(ionic liquid)-derived nitrogen-doped hollow carbon spheres: synthesis and loading with Fe2O3 for high-performance lithium ion batteries. RSC Adv, 2013, 3: 7979–7986CrossRefGoogle Scholar
  25. 25.
    Zhao Q, Fellinger TP, Antonietti M, et al. Nitrogen-doped carbon capsules via poly(ionic liquid)-based layer-by-layer assembly. Macromol Rapid Commun, 2012, 33: 1149–1153CrossRefGoogle Scholar
  26. 26.
    Shao M, Chang Q, Dodelet JP, et al. Recent advances in electrocatalysts for oxygen reduction reaction. Chem Rev, 2016, 116: 3594–3657CrossRefGoogle Scholar
  27. 27.
    Wang T, Wang J, Wang X, et al. Graphene-templated synthesis of sandwich-like porous carbon nanosheets for efficient oxygen reduction reaction in both alkaline and acidic media. Sci China Mater, 2018, 61: 915–925CrossRefGoogle Scholar
  28. 28.
    Wu ZY, Xu XX, Hu BC, et al. Iron carbide nanoparticles encapsulated in mesoporous Fe-N-doped carbon nanofibers for efficient electrocatalysis. Angew Chem Int Ed, 2015, 54: 8179–8183CrossRefGoogle Scholar
  29. 29.
    Liang HW, Wu ZY, Chen LF, et al. Bacterial cellulose derived nitrogen-doped carbon nanofiber aerogel: an efficient metal-free oxygen reduction electrocatalyst for zinc-air battery. Nano Energy, 2015, 11: 366–376CrossRefGoogle Scholar
  30. 30.
    Wu ZY, Xu SL, Yan QQ, et al. Transition metal-assisted carbonization of small organic molecules toward functional carbon materials. Sci Adv, 2018, 4: eaat0788CrossRefGoogle Scholar
  31. 31.
    Chen YZ, Wang C, Wu ZY, et al. From bimetallic metal-organic framework to porous carbon: high surface area and multi-component active dopants for excellent electrocatalysis. Adv Mater, 2015, 27: 5010–5016CrossRefGoogle Scholar
  32. 32.
    Feng T, Qin H, Zhang M. Co@C nanoparticle embedded hierarchically porous N-doped hollow carbon for efficient oxygen reduction. Chem Eur J, 2018, 24: 10178–10185CrossRefGoogle Scholar
  33. 33.
    Amiinu IS, Liu X, Pu Z, et al. From 3D ZIF nanocrystals to Co-Nx/C nanorod array electrocatalysts for ORR, OER, and Zn-air batteries. Adv Funct Mater, 2018, 28: 1704638CrossRefGoogle Scholar
  34. 34.
    Li H, Zhang Z, Dou M, et al. Towards high-performance electrocatalysts for oxygen reduction: inducing atomic-level reconstruction of Fe-Nx site for atomically dispersed Fe/N-doped hierarchically porous carbon. Chem Eur J, 2018, 24: 8848–8856CrossRefGoogle Scholar
  35. 35.
    Yang L, Lv Y, Cao D. Co,N-codoped nanotube/graphene 1D/2D heterostructure for efficient oxygen reduction and hydrogen evolution reactions. J Mater Chem A, 2018, 6: 3926–3932CrossRefGoogle Scholar
  36. 36.
    Liu M, Lin H, Mei Z, et al. Tuning cobalt and nitrogen Co-doped carbon to maximize catalytic sites on a superabsorbent resin for efficient oxygen reduction. ChemSusChem, 2018, 11: 3631–3639CrossRefGoogle Scholar
  37. 37.
    Xiao X, Li Q, Yuan X, et al. Ultrathin nanobelts as an excellent bifunctional oxygen catalyst: insight into the subtle changes in structure and synergistic effects of bimetallic metal-organic framework. Small Methods, 2018, 2: 1800240CrossRefGoogle Scholar
  38. 38.
    Li B, Shi Y, Huang K, et al. Cobalt-doped nickel phosphite for high performance of electrochemical energy storage. Small, 2018, 14: 1703811CrossRefGoogle Scholar
  39. 39.
    Li X, Wei J, Li Q, et al. Nitrogen-doped cobalt oxide nanostructures derived from cobalt-alanine complexes for high-performance oxygen evolution reactions. Adv Funct Mater, 2018, 28: 1800886CrossRefGoogle Scholar
  40. 40.
    Ma J, Xiang Z, Zhang J. Three-dimensional nitrogen and phosphorous Co-doped graphene aerogel electrocatalysts for efficient oxygen reduction reaction. Sci China Chem, 2018, 61: 592–597CrossRefGoogle Scholar
  41. 41.
    Aijaz A, Masa J, Rösler C, et al. Co@Co3O4 encapsulated in carbon nanotube-grafted nitrogen-doped carbon polyhedra as an advanced bifunctional oxygen electrode. Angew Chem Int Ed, 2016, 55: 4087–4091CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Binshen Wang (王滨燊)
    • 1
    • 2
  • Yousong Liu (刘有松)
    • 2
  • Mucong Deng (邓沐聪)
    • 2
  • Jin Luo (罗进)
    • 2
  • Guangcheng Yang (杨光成)
    • 2
  • Shiguo Zhang (张世国)
    • 3
  • Jiaheng Zhang (张嘉恒)
    • 1
    Email author
  • Qinghua Zhang (张庆华)
    • 2
    Email author
  1. 1.School of Materials Science and EngineeringHarbin Institute of TechnologyShenzhenChina
  2. 2.Research Center of Energetic Material Genome Science, Institute of Chemical MaterialsChina Academy of Engineering Physics (CAEP)MianyangChina
  3. 3.College of Materials Science and EngineeringHunan UniversityChangshaChina

Personalised recommendations