Recent advances in selective C-C bond coupling for ethanol upgrading over balanced Lewis acid-base catalysts

  • Jingjing Dai (戴菁菁)
  • Hongbo Zhang (张洪波)Email author
Reviews Special Issue: Celebrating the 100th Anniversary of Nankai University


Ethanol is a considerable platform molecule in biomass conversion, which could be acquired in quantity through acetone-butanol-ethanol (ABE) fermentation. People have been working on the upgrading of ethanol to value added chemicals for decades. In the meantime, 1-butanol and a series of value added products have been selectively generated through C-C bond coupling. In this mini-review, we focus on the recent advances in selective C-C bond formation over balanced Lewis acid-base catalysts such as modified metal oxide, mixed metal oxide, hydroxyapatite and zeolite confined transition metal oxide catalysts. Among them, Pd-MgAlOx and Sr-based hydroxyapatite exhibit >70% 1-butanol selectivity, while ZnxZryOz and Ta-SiBEA zeolite achieve >80% of isobutene and butadiene selectivity respectively. The mechanism and reaction pathway of C-C bond formation in each reaction system are described in detail. The correlation between C-C bond coupling and the acidity/basicity of the Lewis acid-base pairs from the surface of the catalysts are also discussed.


balanced Lewis acid-base pair aldol condensation ethanol upgrading C-C bond formation metal oxide 

平衡Lewis酸碱催化剂催化乙醇转化形成C-C键的 最新进展


乙醇是生物质转化过程中重要的平台分子, 可以通过ABE (丙酮-丁醇-乙醇)发酵过程大量获得. 近几十年来, 人们一直致力 于将乙醇升级为高附加值化学品. 通过C-C键生成过程, 选择性地 生成了1-丁醇和一系列高附加值产品. 本文总结了近年来在平衡 Lewis酸碱催化剂上选择性生成C-C键的研究进展, 包括金属氧化 物催化剂、混合金属氧化物催化剂、羟基磷灰石和沸石分子筛限 域过渡金属氧化物催化剂. 其中Pd-MgAlOx和Sr基羟基磷灰石催化 剂对应1-丁醇的选择性>70%, ZnxZryOz和Ta-SiBEA沸石对异丁烯 和丁二烯的选择性>80%. 本文详细介绍了各反应体系中C-C键形 成的机理和反应路径, 并讨论了C–C键生成与催化剂表面Lewis 酸、碱强度的关系.



The work was supported by the “111 Project” of China (B18030) and Nankai University.


  1. 1.
    West RM, Liu ZY, Peter M, et al. Liquid alkanes with targeted molecular weights from biomass-derived carbohydrates. ChemSusChem, 2008, 1: 417–424CrossRefGoogle Scholar
  2. 2.
    Parikka M. Global biomass fuel resources. Biomass Bioenergy, 2004, 27: 613–620CrossRefGoogle Scholar
  3. 3.
    Angelici C, Weckhuysen BM, Bruijnincx PCA. Chemocatalytic conversion of ethanol into butadiene and other bulk chemicals. ChemSusChem, 2013, 6: 1595–1614CrossRefGoogle Scholar
  4. 4.
    Wu X, Fang G, Tong Y, et al. Catalytic upgrading of ethanol to n-butanol: Progress in catalyst development. ChemSusChem, 2018, 11: 71–85CrossRefGoogle Scholar
  5. 5.
    Wu L, Moteki T, Gokhale AA, et al. Production of fuels and chemicals from biomass: Condensation reactions and beyond. Chem, 2016, 1: 32–58CrossRefGoogle Scholar
  6. 6.
    Ndaba B, Chiyanzu I, Marx S. n-Butanol derived from biochemical and chemical routes: A review. Biotech Rep, 2015, 8: 1–9CrossRefGoogle Scholar
  7. 7.
    Rudloff J, Zaccardi JM, Richard S, et al. Analysis of pre-ignition in highly charged SI engines: Emphasis on the auto-ignition mode. Proc Combust Institute, 2013, 34: 2959–2967CrossRefGoogle Scholar
  8. 8.
    Campos-Fernández J, Arnal JM, Gómez J, et al. A comparison of performance of higher alcohols/diesel fuel blends in a diesel engine. Appl Energy, 2012, 95: 267–275CrossRefGoogle Scholar
  9. 9.
    Ordónez S, Díaz E, León M, et al. Hydrotalcite-derived mixed oxides as catalysts for different C-C bond formation reactions from bioorganic materials. Catal Today, 2011, 167: 71–76CrossRefGoogle Scholar
  10. 10.
    Hanspal S, Young ZD, Shou H, et al. Multiproduct steady-state isotopic transient kinetic analysis of the ethanol coupling reaction over hydroxyapatite and magnesia. ACS Catal, 2015, 5: 1737–1746CrossRefGoogle Scholar
  11. 11.
    Moteki T, Flaherty DW. Mechanistic insight to C-C bond formation and predictive models for cascade reactions among alcohols on Ca- and Sr-hydroxyapatites. ACS Catal, 2016, 6: 4170–4183CrossRefGoogle Scholar
  12. 12.
    Jordison TL, Peereboom L, Miller DJ. Impact of water on condensed phase ethanol guerbet reactions. Ind Eng Chem Res, 2016, 55: 6579–6585CrossRefGoogle Scholar
  13. 13.
    Sun J, Zhu K, Gao F, et al. Direct conversion of bio-ethanol to isobutene on nanosized ZnxZryOz mixed oxides with balanced acid-base sites. J Am Chem Soc, 2011, 133: 11096–11099CrossRefGoogle Scholar
  14. 14.
    Zhang H, Ibrahim MYS, Flaherty DW. Aldol condensation among acetaldehyde and ethanol reactants on TiO2: Experimental evidence for the kinetically relevant nucleophilic attack of enolates. J Catal, 2018, 361: 290–302CrossRefGoogle Scholar
  15. 15.
    Kozlowski JT, Davis RJ. Sodium modification of zirconia catalysts for ethanol coupling to 1-butanol. J Energy Chem, 2013, 22: 58–64CrossRefGoogle Scholar
  16. 16.
    Ndou A. Dimerisation of ethanol to butanol over solid-base catalysts. Appl Catal A-General, 2003, 251: 337–345CrossRefGoogle Scholar
  17. 17.
    Gines MJL, Iglesia E. Bifunctional condensation reactions of alcohols on basic oxides modified by copper and potassium. J Catal, 1998, 176: 155–172CrossRefGoogle Scholar
  18. 18.
    León M, Díaz E, Ordóñez S. Ethanol catalytic condensation over Mg-Al mixed oxides derived from hydrotalcites. Catal Today, 2011, 164: 436–442CrossRefGoogle Scholar
  19. 19.
    Rao KK, Gravelle M, Valente JS, et al. Activation of Mg-Al hydrotalcite catalysts for aldol condensation reactions. J Catal, 1998, 173: 115–121CrossRefGoogle Scholar
  20. 20.
    Ramasamy KK, Gray M, Job H, et al. Tunable catalytic properties of bi-functional mixed oxides in ethanol conversion to high value compounds. Catal Today, 2016, 269: 82–87CrossRefGoogle Scholar
  21. 21.
    Pang J, Zheng M, He L, et al. Upgrading ethanol to n-butanol over highly dispersed Ni-MgAlO catalysts. J Catal, 2016, 344: 184–193CrossRefGoogle Scholar
  22. 22.
    Marcu IC, Tichit D, Fajula F, et al. Catalytic valorization of bioethanol over Cu-Mg-Al mixed oxide catalysts. Catal Today, 2009, 147: 231–238CrossRefGoogle Scholar
  23. 23.
    Faba L, Díaz E, Ordóñez S. Gas phase acetone self-condensation over unsupported and supported Mg-Zr mixed-oxides catalysts. Appl Catal B-Environ, 2013, 142–143: 387–395CrossRefGoogle Scholar
  24. 24.
    Kunkes EL, Gürbüz EI, Dumesic JA. Vapour-phase C-C coupling reactions of biomass-derived oxygenates over Pd/CeZrOx catalysts. J Ratal, 2009, 266: 236–249Google Scholar
  25. 25.
    Iborra M, Izquierdo JF, Cunill F, et al. Application of the response surface methodology to the kinetic study of the gas-phase addition of ethanol to isobutene on a sulfonated styrene-divinylbenzene resin. Ind Eng Chem Res, 1992, 31: 1840–1848CrossRefGoogle Scholar
  26. 26.
    Collignon F, Poncelet G. Comparative vapor phase synthesis of ETBE from ethanol and isobutene over different acid zeolites. J Catal, 2001, 202: 68–77CrossRefGoogle Scholar
  27. 27.
    Shylesh S, Gokhale AA, Scown CD, et al. From sugars to wheels: The conversion of ethanol to 1,3-butadiene over metal-promoted magnesia-silicate catalysts. ChemSusChem, 2016, 9: 1462–1472CrossRefGoogle Scholar
  28. 28.
    Janssens W, Makshina EV, Vanelderen P, et al. Ternary Ag/MgO-SiO2 catalysts for the conversion of ethanol into butadiene. ChemSusChem, 2015, 8: 994–1008CrossRefGoogle Scholar
  29. 29.
    Sushkevich VL, Ivanova II. Mechanistic study of ethanol conversion into butadiene over silver promoted zirconia catalysts. Appl Catal B-Environ, 2017, 215: 36–49CrossRefGoogle Scholar
  30. 30.
    Nikolaev SA, Tsodikov MV, Chistyakov AV, et al. The activity of mono- and bimetallic gold catalysts in the conversion of sub- and supercritical ethanol to butanol. J Catal, 2019, 369: 501–517CrossRefGoogle Scholar
  31. 31.
    Yang C, Meng ZY. Bimolecular condensation of ethanol to 1-butanol catalyzed by alkali cation zeolites. J Catal, 1993, 142: 37–44CrossRefGoogle Scholar
  32. 32.
    Ho CR, Shylesh S, Bell AT. Mechanism and kinetics of ethanol coupling to butanol over hydroxyapatite. ACS Catal, 2016, 6: 939–948CrossRefGoogle Scholar
  33. 33.
    Nozière B, Córdova A. A kinetic and mechanistic study of the amino acid catalyzed aldol condensation of acetaldehyde in aqueous and salt solutions. J Phys Chem A, 2008, 112: 2827–2837CrossRefGoogle Scholar
  34. 34.
    Tichit D, Lutic D, Coq B, et al. The aldol condensation of acetaldehyde and heptanal on hydrotalcite-type catalysts. J Catal, 2003, 219: 167–175CrossRefGoogle Scholar
  35. 35.
    Frusteri F, Freni S, Chiodo V, et al. Steam reforming of bio-ethanol on alkali-doped Ni/MgO catalysts: Hydrogen production for MC fuel cell. Appl Catal A-General, 2004, 270: 1–7CrossRefGoogle Scholar
  36. 36.
    Gao D, Feng Y, Yin H, et al. Coupling reaction between ethanol dehydrogenation and maleic anhydride hydrogenation catalyzed by Cu/Al2O3, Cu/ZrO2, and Cu/ZnO catalysts. Chem Eng J, 2013, 233: 349–359CrossRefGoogle Scholar
  37. 37.
    Chieregato A, Velasquez Ochoa J, Bandinelli C, et al. On the chemistry of ethanol on basic oxides: Revising mechanisms and intermediates in the Lebedev and Guerbet reactions. ChemSusChem, 2015, 8: 377–388CrossRefGoogle Scholar
  38. 38.
    Inaba M, Murata K, Takahara I, et al. Production of olefins from ethanol by Fe and/or P-modified H-ZSM-5 zeolite catalysts. J Chem Technol Biotechnol, 2011, 86: 95–104CrossRefGoogle Scholar
  39. 39.
    Rahimi N, Karimzadeh R. Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins: A review. Appl Catal A-General, 2011, 398: 1–17CrossRefGoogle Scholar
  40. 40.
    Kowal A, Li M, Shao M, et al. Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2. Nat Mater, 2009, 8: 325–330CrossRefGoogle Scholar
  41. 41.
    Gürbüz EI, Hibbitts DD, Iglesia E. Kinetic and mechanistic assessment of alkanol/alkanal decarbonylation and deoxygenation pathways on metal catalysts. J Am Chem Soc, 2015, 137: 11984–11995CrossRefGoogle Scholar
  42. 42.
    Quesada J, Faba L, Díaz E, et al. Enhancement of the 1-butanol productivity in the ethanol condensation catalyzed by noble metal nanoparticles supported on Mg-Al mixed oxide. Appl Catal A-General, 2018, 563: 64–72CrossRefGoogle Scholar
  43. 43.
    Domok M, Toth M, Rasko J, et al. Adsorption and reactions of ethanol and ethanol-water mixture on alumina-supported Pt catalysts. Appl Catal B-Environ, 2007, 69: 262–272CrossRefGoogle Scholar
  44. 44.
    Christiansen MA, Mpourmpakis G, Vlachos DG. Density functional theory-computed mechanisms of ethylene and diethyl ether formation from ethanol on γ-Al2O3 (100). ACS Catal, 2013, 3: 1965–1975CrossRefGoogle Scholar
  45. 45.
    de Oliveira TKR, Rosset M, Perez-Lopez OW. Ethanol dehydration to diethyl ether over Cu-Fe/ZSM-5 catalysts. Catal Commun, 2018, 104: 32–36CrossRefGoogle Scholar
  46. 46.
    Lai S, She Y, Zhan W, et al. Performance of Fe-ZSM-5 for selective catalytic reduction of NOx with NH3: Effect of the atmosphere during the preparation of catalysts. J Mol Catal A-Chem, 2016, 424: 232–240CrossRefGoogle Scholar
  47. 47.
    Wang S, Goulas K, Iglesia E. Condensation and esterification reactions of alkanals, alkanones, and alkanols on TiO2: Elementary steps, site requirements, and synergistic effects of bifunctional strategies. J Catal, 2016, 340: 302–320CrossRefGoogle Scholar
  48. 48.
    Ogata Y, Kawasaki A. Alkoxide transfer from aluminium alkoxide to aldehyde in the Tishchenko reaction. Tetrahedron, 1969, 25: 929–935CrossRefGoogle Scholar
  49. 49.
    Li R, Zhang M, Yu Y. A DFT study on the Cu (111) surface for ethyl acetate synthesis from ethanol dehydrogenation. Appl Surf Sci, 2012, 258: 6777–6784CrossRefGoogle Scholar
  50. 50.
    Di Cosimo JI, Apestegui&a CR, Ginés MJL, et al. Structural requirements and reaction pathways in condensation reactions of alcohols on MgyAlOx, catalysts. J Catal, 2000, 190: 261–275CrossRefGoogle Scholar
  51. 51.
    Seligman RB. Production of Diacetone Alcohol. U.S. Patent, 2879298, 1957, 662, 323Google Scholar
  52. 52.
    Mizutani Y, Izumi A, Watanabe S. Condensation of Ketones. Japan Patent, 70028566-B, 1970, 37Google Scholar
  53. 53.
    Heinz JB, Tex L. Process for the Production of Neopentyl Glycol. U.S. Patent, 3920760, 1975, 502, 332Google Scholar
  54. 54.
    Robbins LV, Porter WJ. Preparation of Higher Molecular Weight Ketones. U.S. Patent 3361828, 1962, 163, 834Google Scholar
  55. 55.
    Birky TW, Kozlowski JT, Davis RJ. Isotopic transient analysis of the ethanol coupling reaction over magnesia. J Catal, 2013, 298: 130–137CrossRefGoogle Scholar
  56. 56.
    Di Cosimo JI, Diez VK, Xu M, et al. Structure and surface and catalytic properties of Mg-Al basic oxides. J Catal, 1998, 178: 499–510CrossRefGoogle Scholar
  57. 57.
    Young ZD, Hanspal S, Davis RJ. Aldol condensation of acetaldehyde over titania, hydroxyapatite, and magnesia. ACS Catal, 2016, 6: 3193–3202CrossRefGoogle Scholar
  58. 58.
    Kozlowski JT, Davis RJ. Heterogeneous catalysts for the Guerbet coupling of alcohols. ACS Catal, 2013, 3: 1588–1600CrossRefGoogle Scholar
  59. 59.
    Marcu IC, Tanchoux N, Fajula F, et al. Catalytic conversion of ethanol into butanol over M-Mg-Al mixed oxide catalysts (M = Pd, Ag, Mn, Fe, Cu, Sm, Yb) obtained from LDH precursors. Catal Lett, 2013, 143: 23–30CrossRefGoogle Scholar
  60. 60.
    Rekoske JE, Barteau MA. Kinetics, selectivity, and deactivation in the aldol condensation of acetaldehyde on anatase titanium dioxide. Ind Eng Chem Res, 2011, 50: 41–51CrossRefGoogle Scholar
  61. 61.
    Idriss H, Kim KS, Barteau MA. Carbon-carbon bond formation via aldolization of acetaldehyde on single crystal and polycrystalline TiO2 surfaces. J Catal, 1993, 139: 119–133CrossRefGoogle Scholar
  62. 62.
    Idriss H, Barteau MA. Selectivity and mechanism shifts in the reactions of acetaldehyde on oxidized and reduced TiO2 (001) surfaces. Catal Lett, 1996, 40: 147–153CrossRefGoogle Scholar
  63. 63.
    Luo S, Falconer JL. Aldol condensation of acetaldehyde to form high molecular weight compounds on TiO2. Catal Lett, 1999, 57: 89–93CrossRefGoogle Scholar
  64. 64.
    Wang S, Iglesia E. Substituent effects and molecular descriptors of reactivity in condensation and esterification reactions of oxygenates on acid-base pairs at TiO2 and ZrO2 surfaces. J Phys Chem C, 2016, 120: 21589–21616CrossRefGoogle Scholar
  65. 65.
    Ogo S, Onda A, Iwasa Y, et al. 1-Butanol synthesis from ethanol over strontium phosphate hydroxyapatite catalysts with various Sr/P ratios. J Catal, 2012, 296: 24–30CrossRefGoogle Scholar
  66. 66.
    Ogo S, Onda A, Yanagisawa K. Hydrothermal synthesis of vanadate-substituted hydroxyapatites, and catalytic properties for conversion of 2-propanol. Appl Catal A-General, 2008, 348: 129–134CrossRefGoogle Scholar
  67. 67.
    Ogo S, Onda A, Yanagisawa K. Selective synthesis of 1-butanol from ethanol over strontium phosphate hydroxyapatite catalysts. Appl Catal A-General, 2011, 402: 188–195CrossRefGoogle Scholar
  68. 68.
    Moteki T, Rowley AT, Flaherty DW. Self-terminated cascade reactions that produce methylbenzaldehydes from ethanol. ACS Catal, 2016, 6: 7278–7282CrossRefGoogle Scholar
  69. 69.
    Dumitriu E, Hulea V, Fechete I, et al. The aldol condensation of lower aldehydes over MFI zeolites with different acidic properties. Microporous Mesoporous Mater, 2001, 43: 341–359CrossRefGoogle Scholar
  70. 70.
    Lewis JD, Van de Vyver S, Román-Leshkov Y. Acid-base pairs in Lewis acidic zeolites promote direct aldol reactions by soft enolization. Angew Chem Int Ed, 2015, 54: 9835–9838CrossRefGoogle Scholar
  71. 71.
    Ipatiev VN. ZrJr question Iber the decasation of hhyl alcohol in the presence of various catalysts. J Prakt Chem, 1903, 2: 67–70Google Scholar
  72. 72.
    Kvisle S, Aguero A, Sneeden RPA. Transformation of ethanol into 1,3-butadiene over magnesium oxide/silica catalysts. Appl Catal, 1988, 43: 117–131CrossRefGoogle Scholar
  73. 73.
    Angelici C, Velthoen MEZ, Weckhuysen BM, et al. Effect of preparation method and CuO promotion in the conversion of ethanol into 1,3-butadiene over SiO2-MgO catalysts. ChemSusChem, 2014, 7: 2505–2515CrossRefGoogle Scholar
  74. 74.
    Ordomskiy VV, Sushkevich VL, Ivanova II. One-step Method for Butadiene Production. Russia Patent, WO 2012/015340. 2012Google Scholar
  75. 75.
    Müller P, Burt SP, Love AM, et al. Mechanistic study on the Lewis acid catalyzed synthesis of 1,3-butadiene over Ta-BEA using modulated operando DRIFTS-MS. ACS Catal, 2016, 6: 6823–6832CrossRefGoogle Scholar
  76. 76.
    Sushkevich VL, Ivanova II. Ag-promoted ZrBEA zeolites obtained by post-synthetic modification for conversion of ethanol to butadiene. ChemSusChem, 2016, 9: 2216–2225CrossRefGoogle Scholar
  77. 77.
    Chae HJ, Kim TW, Moon YK, et al. Butadiene production from bioethanol and acetaldehyde over tantalum oxide-supported ordered mesoporous silica catalysts. Appl Catal B-Environ, 2014, 150–151: 596–604CrossRefGoogle Scholar
  78. 78.
    Sushkevich VL, Palagin D, Ivanova II. With open arms: Open sites of ZrBEA zeolite facilitate selective synthesis of butadiene from ethanol. ACS Catal, 2015, 5: 4833–4836CrossRefGoogle Scholar
  79. 79.
    Kyriienko PI, Larina OV, Soloviev SO, et al. High selectivity of TaSiBEA zeolite catalysts in 1,3-butadiene production from ethanol and acetaldehyde mixture. Catal Commun, 2016, 77: 123–126CrossRefGoogle Scholar
  80. 80.
    Yan T, Yang L, Dai W, et al. On the deactivation mechanism of zeolite catalyst in ethanol to butadiene conversion. J Catal, 2018, 367: 7–15CrossRefGoogle Scholar
  81. 81.
    Jiang D, Fang G, Tong Y, et al. Multifunctional Pd@UiO-66 catalysts for continuous catalytic upgrading of ethanol to n-butanol. ACS Catal, 2018, 8: 11973–11978CrossRefGoogle Scholar
  82. 82.
    Cirujano FG, López-Maya E, Rodríguez-Albelo M, et al. Selective one-pot two-step C-C bond formation using metal-organic frameworks with mild basicity as heterogeneous catalysts. ChemCatChem, 2017, 9: 4019–4023CrossRefGoogle Scholar
  83. 83.
    Jiang W, Yang J, Liu YY, et al. A stable porphyrin-based porous mog metal-organic framework as an efficient solvent-free catalyst for C-C bond formation. Inorg Chem, 2017, 56: 3036–3043CrossRefGoogle Scholar
  84. 84.
    Dhakshinamoorthy A, Asiri AM, Garcia H. Formation of C-C and C-heteroatom bonds by C-H activation by metal organic frameworks as catalysts or supports. ACS Catal, 2019, 9: 1081–1102CrossRefGoogle Scholar
  85. 85.
    Madasamy K, Kumaraguru S, Sankar V, et al. A Zn based metal organic framework as a heterogeneous catalyst for C-C bond formation reactions. New J Chem, 2019, 43: 3793–3800CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jingjing Dai (戴菁菁)
    • 1
  • Hongbo Zhang (张洪波)
    • 1
    Email author
  1. 1.School of Materials Science and Engineering & National Institute for Advanced MaterialsNankai UniversityTianjinChina

Personalised recommendations