Hierarchical flower-like spinel manganese-based oxide nanosheets for high-performance lithium ion battery

  • Quanqing Zhao (赵全清)
  • Zefeng Guo (郭泽峰)
  • Yu Wu (吴宇)
  • Liqin Wang (王利芹)
  • Zhanli Han (韩占立)
  • Xilan Ma (马西兰)
  • Youqi Zhu (朱有启)
  • Chuanbao Cao (曹传宝)Email author


Hierarchical flower-structured two-dimensional (2D) nanosheet is favorable for electrochemical reactions. The unique structure not only exposes the maximized active sites and shortens ion/electron diffusion channels, but also inhibits the structural strain during cycling processes. Herein, we report the hierarchical flower-like pure spinel manganese-based oxide nanosheets synthesized via a template-orientated strategy. The oriented template is fabricated by decomposition of carbonate obtained from “bubble reaction” via an alcohol-assisted hydrothermal process. The resultant spinel manganese-based oxide nanosheets simultaneously possess excellent rate capability and cycling stability. The high-voltage LiNi0.5Mn1.5O4 (LNMO-HF) has a uniform phase distribution without the common impurity phase LixNi1-xO2 and NixO. Besides, the LNMO-HF delivers high discharge capacity of 142.6 mA h g-1 with specific energy density of 660.7 W h kg-1 at 1 C under 55°C. More importantly, the template-orientated strategy can be extended to the synthesis of LiMn2O4 (LMO), which can achieve 88.12% capacity retention after 1000 cycles.


nanosheet flower-like structure manganese-based oxide lithium ion battery 



由二维(2D)纳米片组装成的多级花状结构有利于电化学反应. 这种独特的结构不仅可以暴露更多的活性位点、 缩短离子/电子扩散路径, 还可以确保良好的结构稳定性, 抑制重复循环过程中的结构应变. 本文通过模板导向策略合成多级花状纯相尖晶石锰基氧化物纳米片. 通过醇辅助水热法, 利用 “气泡反应” 原理获得的碳酸盐分解来制备取向模板. 最终产物尖晶石锰基氧化物纳米片同时满足优异的倍率性能和循环稳定性要求. 合成的分层花状高压LiNi0.5Mn1.5O4 (LNMO-HF)元素分布均匀, 且无杂相. LNMO-HF 可以提供142.6 mA h g−1的高放电容量, 在55°C、 1 C下, 其比能量密度为660.7 W h kg−1. 此外, 利用这种模板导向策略合成的 LiMn2O4 (LMO), 在1000次循环后, 其容量保持率可达88.12%.



This work was financially supported by the National Natural Science Foundation of China (21371023).

Supplementary material

40843_2019_9442_MOESM1_ESM.pdf (1.1 mb)
Hierarchical flower-like spinel manganese-based oxide nanosheets for high-performance lithium ion battery


  1. 1.
    Crabtree G. The energy-storage revolution. Nature, 2015, 526: S92CrossRefGoogle Scholar
  2. 2.
    Shi JL, Xiao DD, Ge, M, et al. High-capacity cathode material with high voltage for Li-ion batteries. Adv Mater, 2018, 30: 1705575CrossRefGoogle Scholar
  3. 3.
    Lee, J, Kitchaev DA, Kwon DH, et al. Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials. Nature, 2018, 556: 185–190CrossRefGoogle Scholar
  4. 4.
    Hao, J, Liu, H, Ji, Y, et al. Synthesis and electrochemical performance of Sn-doped LiNi0.5Mn1.5O4 cathode material for high-voltage lithium-ion batteries. Sci China Mater, 2017, 60: 315–323CrossRefGoogle Scholar
  5. 5.
    Manthiram, A, Chemelewski, K, Lee ES. A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries. Energy Environ Sci, 2014, 7: 1339CrossRefGoogle Scholar
  6. 6.
    Xiao, J, Chen, X, Sushko PV, et al. High-performance LiNi0.5Mn1.5-O4 spinel controlled by Mn + concentration and site disorder. Adv Mater, 2012, 24: 2109–2116CrossRefGoogle Scholar
  7. 7.
    Zhang, X, Cheng, F, Yang, J, et al. LiNi0.5Mn1.5O4 porous nanorods as high-rate and long-life cathodes for Li-ion batteries. Nano Lett, 2013, 13: 2822–2825CrossRefGoogle Scholar
  8. 8.
    Yin, C, Zhou, H, Yang, Z, et al. Synthesis and electrochemical properties of LiNi0.5Mn1.5O4 for Li-ion batteries by the metal-organic framework method. ACS Appl Mater Interfaces, 2018, 10: 13625–13634CrossRefGoogle Scholar
  9. 9.
    Zhou, L, Zhao, D, Lou XWD. LiNi0.5Mn1.5O4 hollow structures as high-performance cathodes for lithium-ion batteries. Angew Chem Int Ed, 2012, 51: 239–241CrossRefGoogle Scholar
  10. 10.
    Wang, J, Nie, P, Xu, G, et al. High-voltage LiNi0.45Cr0.1Mn1.45O4 cathode with superlong cycle performance for wide temperature lithium-ion batteries. Adv Funct Mater, 2018, 28: 1704808CrossRefGoogle Scholar
  11. 11.
    Wu, Y, Zhang, J, Cao, C, et al. LiNi0.5Mn1.5O4 nano-submicro cubes as high-performance 5 V cathode materials for lithium-ion batteries. Electrochim Acta, 2017, 230: 293–298CrossRefGoogle Scholar
  12. 12.
    Lian, F, Zhang, F, Yang, L, et al. Constructing a heterostructural LiNi0.4Mn1.6O4_δ material from concentration-gradient framework to significantly improve its cycling performance. ACS Appl Mater Interfaces, 2017, 9: 15822–15829CrossRefGoogle Scholar
  13. 13.
    Zhu, C, Mu, X, van Aken PA, et al. Fast Li storage in MoS2-gra-phene-carbon nanotube nanocomposites: Advantageous functional integration of 0D, 1D, and 2D nanostructures. Adv Energy Mater, 2015, 5: 1401170CrossRefGoogle Scholar
  14. 14.
    Duan, J, Chen, S, Chambers BA, et al. 3D WS2 nanolayers@hetero-atom-doped graphene films as hydrogen evolution catalyst electrodes. Adv Mater, 2015, 27: 4234–4241CrossRefGoogle Scholar
  15. 15.
    Wang, Z, Rafai, S, Qiao, C, et al. Microwave-assisted synthesis of CuS hierarchical nanosheets as the cathode material for high-capacity rechargeable magnesium batteries. ACS Appl Mater Interfaces, 2019, 11: 7046–7054CrossRefGoogle Scholar
  16. 16.
    Rui, X, Zhao, X, Lu, Z, et al. Olivine-type nanosheets for lithium ion battery cathodes. ACS Nano, 2013, 7: 5637–5646CrossRefGoogle Scholar
  17. 17.
    Chen, L, Jiang, H, Hu, Y, et al. In-situ growth of ultrathin MoS2 nanosheets on sponge-like carbon nanospheres for lithium-ion batteries. Sci China Mater, 2018, 61: 1049–1056CrossRefGoogle Scholar
  18. 18.
    Zhao, L, Dong, B, Li, S, et al. Interdiffusion reaction-assisted hybridization of two-dimensional metal-organic frameworks and Ti3C2Tx nanosheets for electrocatalytic oxygen evolution. ACS Nano, 2017, 11: 5800–5807CrossRefGoogle Scholar
  19. 19.
    Zhu, Y, Cao, T, Li, Z, et al. Two-dimensional SnO2/graphene het-erostructures for highly reversible electrochemical lithium storage. Sci China Mater, 2018, 61: 1527–1535CrossRefGoogle Scholar
  20. 20.
    Chen, D, Peng, L, Yuan, Y, et al. Two-dimensional holey Co3O4 nanosheets for high-rate alkali-ion batteries: From rational synthesis to in situ probing. Nano Lett, 2017, 17: 3907–3913CrossRefGoogle Scholar
  21. 21.
    Zhu, Y, Cao C. A simple synthesis of two-dimensional ultrathin nickel cobaltite nanosheets for electrochemical lithium storage. Electrochim Acta, 2015, 176: 141–148CrossRefGoogle Scholar
  22. 22.
    Wang, W, Li, P, Zheng, H, et al. Ultrathin layered SnSe nanoplates for low voltage, high-rate, and long-life alkali-ion batteries. Small, 2017, 13: 1702228CrossRefGoogle Scholar
  23. 23.
    Zhu, Y, Cao, T, Cao, C, et al. A general synthetic strategy to monolayer graphene. Nano Res, 2018, 11: 3088–3095CrossRefGoogle Scholar
  24. 24.
    Wang, C, Li, S, Han, Y, et al. Assembly of LiMnPO4 nanoplates into microclusters as a high-performance cathode in lithium-ion batteries. ACS Appl Mater Interfaces, 2017, 9: 27618–27624CrossRefGoogle Scholar
  25. 25.
    Zhao, Y, Peng, L, Liu, B, et al. Single-crystalline LiFePO4 nanosheets for high-rate Li-ion batteries. Nano Lett, 2014, 14: 2849–2853CrossRefGoogle Scholar
  26. 26.
    Peng, L, Zhu, Y, Khakoo, U, et al. Self-assembled LiNi1/3Co1/3-Mn1/3O2 nanosheet cathodes with tunable rate capability. Nano Energy, 2015, 17: 36–42CrossRefGoogle Scholar
  27. 27.
    Tai, Z, Subramaniyam CM, Chou SL, et al. Few atomic layered lithium cathode materials to achieve ultrahigh rate capability in lithium-ion batteries. Adv Mater, 2017, 29: 1700605CrossRefGoogle Scholar
  28. 28.
    Zheng, H, Chen, X, Yang, Y, et al. Self-assembled LiNi1/3Co1/3-Mn1/3O2 nanosheet cathode with high electrochemical performance. ACS Appl Mater Interfaces, 2017, 9: 39560–39568CrossRefGoogle Scholar
  29. 29.
    Wu, Y, Cao, T, Wang, R, et al. A general strategy for the synthesis of two-dimensional holey nanosheets as cathodes for superior energy storage. J Mater Chem A, 2018, 6: 8374–8381CrossRefGoogle Scholar
  30. 30.
    Xu, M, Fei, L, Zhang, W, et al. Tailoring anisotropic Li-ion transport tunnels on orthogonally arranged Li-rich layered oxide nanoplates toward high-performance Li-ion batteries. Nano Lett, 2017, 17: 1670–1677CrossRefGoogle Scholar
  31. 31.
    Wu, Y, Cao, C, Zhu, Y, et al. Cube-shaped hierarchical LiNi1/3-Co1/3Mn1/3O2 with enhanced growth of nanocrystal planes as highperformance cathode materials for lithium-ion batteries. J Mater Chem A, 2015, 3: 15523–15528CrossRefGoogle Scholar
  32. 32.
    Wu, Y, Cao, C, Zhang, J, et al. Hierarchical LiMn2O4 hollow cubes with exposed {111} planes as high-power cathodes for lithium-ion batteries. ACS Appl Mater Interfaces, 2016, 8: 19567–19572CrossRefGoogle Scholar
  33. 33.
    Fan SS, Zhong, H, Yu HT, et al. Hollow and hierarchical Na2Li2Ti6O14 microspheres with high electrochemical performance as anode material for lithium-ion battery. Sci China Mater, 2017, 60: 427–437CrossRefGoogle Scholar
  34. 34.
    Huang ZD, Zhang TT, Lu, H, et al. Bimetal-organic-framework derived CoTiO3 mesoporous micro-prisms anode for superior stable power sodium ion batteries. Sci China Mater, 2018, 61: 1057–1066CrossRefGoogle Scholar
  35. 35.
    Zhao, Q, Wu, Y, Ma, X, et al. Mn oxidation state controllable spinel manganese-based intergrown cathode for excellent reversible lithium storage. J Power Sources, 2017, 359: 295–302CrossRefGoogle Scholar
  36. 36.
    Li, M, Yang, W, Huang, Y, et al. Hierarchical mesoporous Co3O4@ ZnCo2O4 hybrid nanowire arrays supported on Ni foam for highperformance asymmetric supercapacitors. Sci China Mater, 2018, 61: 1167–1176CrossRefGoogle Scholar
  37. 37.
    Hou, J, Cao, C, Idrees, F, et al. Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano, 2015, 9: 2556–2564CrossRefGoogle Scholar
  38. 38.
    Yang, S, Chen, J, Liu, Y, et al. Preparing LiNi0.5Mn1.5O4 nanoplates with superior properties in lithium-ion batteries using bimetal-organic coordination-polymers as precursors. J Mater Chem A, 2014, 2: 9322–9330CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Quanqing Zhao (赵全清)
    • 1
  • Zefeng Guo (郭泽峰)
    • 2
  • Yu Wu (吴宇)
    • 1
  • Liqin Wang (王利芹)
    • 1
  • Zhanli Han (韩占立)
    • 1
  • Xilan Ma (马西兰)
    • 1
  • Youqi Zhu (朱有启)
    • 1
  • Chuanbao Cao (曹传宝)
    • 1
    Email author
  1. 1.Research Center of Materials Science, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green ApplicationsBeijing Institute of TechnologyBeijingChina
  2. 2.Datong Coal Mine Group Shuozhou Coal Co. LtdHuairenChina

Personalised recommendations