Advertisement

Conductive metallic filaments dominate in hybrid perovskite-based memory devices

  • Yang Huang
  • Zhenxuan ZhaoEmail author
  • Chen WangEmail author
  • Hongbo Fan
  • Yiming Yang
  • Jiming Bian
  • Huaqiang WuEmail author
Article
  • 55 Downloads

Abstract

Organic-inorganic hybrid perovskites (OHPs) are well-known as light-absorbing materials in solar cells and have recently attracted considerable attention for the applications in resistive switching memory. Previous studies have shown that ions can migrate to form a conductive channel in perovskites under an external voltage. However, the exact resistance mechanism for Ag or halogens which dominate the resistive behavior is still controversial. Here, we demonstrate a resistive switching memory device based on Ag/FA0.83MA0.17Pb(I0.82Br0.18)3/fluorine doped tin oxide (FTO). The migration of Ag cations and halide anions is demonstrated by energy dispersive X-ray spectroscopy (EDS) after the SET process (positive voltage on Ag). By comparing the I-V behavior of the Au-based devices, it is clear that the conductive channel formed by Ag is the main factor of the switching characteristics for Ag-based devices. Meanwhile, by controlling the appropriate SET voltage, two kinds of resistance characteristics of the analog switch and threshold switch can be realized in the Ag-based device. As a result, it may be possible to implement both data storage and neuromorphic computing in a single device.

Keywords

Ag filament perovskite memory analog switch threshold switch resistance mechanism 

电导金属细丝主导的杂化钙钛矿基存储器

摘要

有机-无机杂化钙钛矿(OHPs)作为太阳能电池中的光吸收材 料备受重视, 并且在电阻开关(RS)存储器的应用中引起了广泛关 注. 以前的研究表明, 在外电场作用下钙钛矿中的离子能够发生迁 移并形成导电通道. 然而, 主导其阻变行为的是Ag还是卤素仍然存 在着争议. 本文中, 我们研究了一种基于Ag/FA0.83MA0.17Pb (I0.82Br0.18)3/FTO(掺氟的氧化锡)的电阻开关存储器. 在开启过程 (在Ag电极端施加正向扫描电压)完成后, 我们通过EDS (能量色散 X射线谱)发现了银离子和卤素离子的迁移. 并通过对比基于Au电 极器件的电流-电压特征曲线, 发现由Ag形成的导电通道是影响Ag 基器件开关特性的主要因素. 同时, 通过控制合适大小的开启电压, 基于Ag电极的电阻开关器件实现了模拟开关和阈值开关两种不同 的阻变开关特性. 因此, 在未来有可能在单个器件中同时实现数据 存储和神经形态计算两种功能.

Notes

Acknowledgements

We acknowledge the financial supports from the National Natural Science Foundation of China (51872036, 51773025), Dalian Science and Technology Innovation Fund (2018J12GX033), National Key R&D Program of China (2017YFB0405604)

References

  1. 1.
    Ponseca Jr. CS, Savenije TJ, Abdellah M, et al. Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination. J Am Chem Soc, 2014, 136: 5189–5192CrossRefGoogle Scholar
  2. 2.
    Yin WJ, Shi T, Yan Y. Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv Mater, 2014, 26: 4653–4658CrossRefGoogle Scholar
  3. 3.
    Shi D, Adinolfi V, Comin R, et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science, 2015, 347: 519–522CrossRefGoogle Scholar
  4. 4.
    Wu X, Trinh MT, Niesner D, et al. Trap states in lead iodide perovskites. J Am Chem Soc, 2015, 137: 2089–2096CrossRefGoogle Scholar
  5. 5.
    Miyata A, Mitioglu A, Plochocka P, et al. Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites. Nat Phys, 2015, 11: 582–587CrossRefGoogle Scholar
  6. 6.
    Correa-Baena JP, Saliba M, Buonassisi T, et al. Promises and challenges of perovskite solar cells. Science, 2017, 358: 739–744CrossRefGoogle Scholar
  7. 7.
    Cho H, Jeong SH, Park MH, et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science, 2015, 350: 1222–1225CrossRefGoogle Scholar
  8. 8.
    Su L, Zhao ZX, Li HY, et al. High-performance organolead halide perovskite-based self-powered triboelectric photodetector. ACS Nano, 2015, 9: 11310–11316CrossRefGoogle Scholar
  9. 9.
    Su L, Zhao ZX, Li HY, et al. Photoinduced enhancement of a triboelectric nanogenerator based on an organolead halide perovskite. J Mater Chem C, 2016, 4: 10395–10399CrossRefGoogle Scholar
  10. 10.
    Eames C, Frost JM, Barnes PRF, et al. Ionic transport in hybrid lead iodide perovskite solar cells. Nat Commun, 2015, 6: 7497CrossRefGoogle Scholar
  11. 11.
    Yuan Y, Huang J. Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Acc Chem Res, 2016, 49: 286–293CrossRefGoogle Scholar
  12. 12.
    Wu T, Mukherjee R, Ovchinnikova OS, et al. Metal/ion interactions induced p-i-n junction in methylammonium lead triiodide perovskite single crystals. J Am Chem Soc, 2017, 139: 17285–17288CrossRefGoogle Scholar
  13. 13.
    Li C, Guerrero A, Zhong Y, et al. Origins and mechanisms of hysteresis in organometal halide perovskites. J Phys-Condens Matter, 2017, 29: 193001CrossRefGoogle Scholar
  14. 14.
    Yoo EJ, Lyu M, Yun JH, et al. Resistive switching behavior in organic-inorganic hybrid CH3NH3PbI3-xCL. perovskite for resistive random access memory devices. Adv Mater, 2015, 27: 6170–6175CrossRefGoogle Scholar
  15. 15.
    Stoumpos CC, Malliakas CD, Kanatzidis MG. Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg Chem, 2013, 52: 9019–9038CrossRefGoogle Scholar
  16. 16.
    Xiao Z, Huang J. Energy-efficient hybrid perovskite memristors and synaptic devices. Adv Electron Mater, 2016, 2: 1600100CrossRefGoogle Scholar
  17. 17.
    Xu W, Cho H, Kim YH, et al. Organometal halide perovskite artificial synapses. Adv Mater, 2016, 28: 5916–5922CrossRefGoogle Scholar
  18. 18.
    Leijtens T, Bush K, Cheacharoen R, et al. Towards enabling stable lead halide perovskite solar cells; interplay between structural, environmental, and thermal stability. J Mater Chem A, 2017, 5: 11483–11500CrossRefGoogle Scholar
  19. 19.
    Rehman W, McMeekin DP, Patel JB, et al. Photovoltaic mixed-cation lead mixed-halide perovskites: links between crystallinity, photo-stability and electronic properties. Energy Environ Sci, 2017, 10: 361–369CrossRefGoogle Scholar
  20. 20.
    Xie LQ, Chen L, Nan ZA, et al. Understanding the cubic phase stabilization and crystallization kinetics in mixed cations and ha-lides perovskite single crystals. J Am Chem Soc, 2017, 139: 3320–3323CrossRefGoogle Scholar
  21. 21.
    Chen J, Xu J, Xiao L, et al. Mixed-organic-cation (FA)x(MA)1−xPbI3 planar perovskite solar cells with 16.48% efficiency via a low-pressure vapor-assisted solution process. ACS Appl Mater Interfaces, 2017, 9: 2449–2458CrossRefGoogle Scholar
  22. 22.
    Isikgor FH, Li B, Zhu H, et al. High performance planar perovskite solar cells with a perovskite of mixed organic cations and mixed halides, MA1−xFAxPbl3−xCLy. J Mater Chem A, 2016, 4: 12543–12553CrossRefGoogle Scholar
  23. 23.
    Zhang Y, Grancini G, Feng Y, et al. Optimization of stable quasi-cubic FAxMA1−xPbI3 perovskite structure for solar cells with efficiency beyond 20%. ACS Energy Lett, 2017, 2: 802–806CrossRefGoogle Scholar
  24. 24.
    Wang Y, Wu J, Zhang P, et al. Stitching triple cation perovskite by a mixed anti-solvent process for high performance perovskite solar cells. Nano Energy, 2017, 39: 616–625CrossRefGoogle Scholar
  25. 25.
    Zhao Z, Chen X, Wu H, et al. Probing the photovoltage and photocurrent in perovskite solar cells with nanoscale resolution. Adv Funct Mater, 2016, 26: 3048–3058CrossRefGoogle Scholar
  26. 26.
    Saliba M, Matsui T, Seo JY, et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ Sci, 2016, 9: 1989–1997CrossRefGoogle Scholar
  27. 27.
    Wang S, Zhang C, Feng Y, et al. High-air-flow-velocity assisted intermediate phase engineering for controlled crystallization of mixed perovskite in high efficiency photovoltaics. J Mater Chem A, 2018, 6: 8860–8867CrossRefGoogle Scholar
  28. 28.
    Brunetti B, Cavallo C, Ciccioli A, et al. On the thermal and thermodynamic (in)stability of methylammonium lead halide perovskites. Sci Rep, 2016, 6: 31896CrossRefGoogle Scholar
  29. 29.
    Jung K, Lee JH, Oh K, et al. Efficient composition tuning via cation exchange and improved reproducibility of photovoltaic performance in FAxMA1−xPbI3 planar heterojunction solar cells fabricated by a two-step dynamic spin-coating process. Nano Energy, 2018, 54: 251–263CrossRefGoogle Scholar
  30. 30.
    Chen Q, Zhou H, Song TB, et al. Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Lett, 2014, 14: 4158–4163CrossRefGoogle Scholar
  31. 31.
    Gunawan O, Todorov TK, Mitzi DB. Loss mechanisms in hydrazine-processed Cu2ZnSn(Se, S)4 solar cells. Appl Phys Lett, 2010, 97: 233506CrossRefGoogle Scholar
  32. 32.
    van Reenen S, Kemerink M, Snaith HJ. Modeling anomalous hysteresis in perovskite solar cells. J Phys Chem Lett, 2015, 6: 3808–3814CrossRefGoogle Scholar
  33. 33.
    Richardson G, O’Kane SEJ, Niemann RG, et al. Can slow-moving ions explain hysteresis in the current-voltage curves of perovskite solar cells? Energy Environ Sci, 2016, 9: 1476–1485CrossRefGoogle Scholar
  34. 34.
    Jaysankar M, Qiu W, Bastos J, et al. Crystallisation dynamics in wide-bandgap perovskite films. J Mater Chem A, 2016, 4: 10524–10531CrossRefGoogle Scholar
  35. 35.
    Li C, Tscheuschner S, Paulus F, et al. Iodine migration and its effect on hysteresis in perovskite solar cells. Adv Mater, 2016, 28: 2446–2454CrossRefGoogle Scholar
  36. 36.
    Wang Y, Lv Z, Liao Q, et al. Synergies of electrochemical metallization and valance change in all-inorganic perovskite quantum dots for resistive switching. Adv Mater, 2018, 30: 1800327CrossRefGoogle Scholar
  37. 37.
    Zhu X, Lee J, Lu WD. Iodine vacancy redistribution in organic-inorganic halide perovskite films and resistive switching effects. Adv Mater, 2017, 29: 1700527CrossRefGoogle Scholar
  38. 38.
    Yuan Y, Chae J, Shao Y, et al. Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells. Adv Energy Mater, 2015, 5: 1500615CrossRefGoogle Scholar
  39. 39.
    Midya R, Wang Z, Zhang J, et al. Anatomy of Ag/hafnia-based selectors with 1010 nonlinearity. Adv Mater, 2017, 29: 1604457CrossRefGoogle Scholar
  40. 40.
    Yang Y, Gao P, Li L, et al. Electrochemical dynamics of nanoscale metallic inclusions in dielectrics. Nat Commun, 2014, 5: 4232CrossRefGoogle Scholar
  41. 41.
    Li Y, Long S, Liu Q, et al. Resistive switching performance improvement via modulating nanoscale conductive filament, involving the application of two-dimensional layered materials. Small, 2017, 13: 1604306CrossRefGoogle Scholar
  42. 42.
    Chen B, Shi J, Zheng X, et al. Ferroelectric solar cells based on inorganic-organic hybrid perovskites. J Mater Chem A, 2015, 3: 7699–7705CrossRefGoogle Scholar
  43. 43.
    Park Y, Lee JS. Artificial synapses with short- and long-term memory for spiking neural networks based on renewable materials. ACS Nano, 2017, 11: 8962–8969CrossRefGoogle Scholar
  44. 44.
    Wang Z, Joshi S, Savel’ev SE, et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat Mater, 2017, 16: 101–108CrossRefGoogle Scholar
  45. 45.
    Li Y, Zhong Y, Zhang J, et al. Activity-dependent synaptic plasticity of a chalcogenide electronic synapse for neuromorphic systems. Sci Rep, 2014, 4: 4906CrossRefGoogle Scholar
  46. 46.
    Zucker RS, Regehr WG. Short-term synaptic plasticity. Annu Rev Physiol, 2002, 64: 355–405CrossRefGoogle Scholar
  47. 47.
    CG Galizia, P-M Lledo. Neurosciences-From Molecule To Behavior: A University Textbook. Berlin: Springer, 2013CrossRefGoogle Scholar
  48. 48.
    Yan X, Zhou Z, Zhao J, et al. Flexible memristors as electronic synapses for neuro-inspired computation based on scotch tape-exfoliated mica substrates. Nano Res, 2018, 11: 1183–1192CrossRefGoogle Scholar
  49. 49.
    Wang Z, Midya R, Joshi S, et al. Unconventional computing with diffusive memristors. In: 2018 IEEE International Symposium on Circuits and Systems (ISCAS). 2018, 1–5Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of MicroelectronicsDalian University of TechnologyDalianChina
  2. 2.Institute of MicroelectronicsTsinghua UniversityBeijingChina
  3. 3.Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of PhysicsDalian University of TechnologyDalianChina

Personalised recommendations