Super-tough and strong nanocomposite fibers by flow-induced alignment of carbon nanotubes on grooved hydrogel surfaces

  • Chuangqi Zhao (赵创奇)
  • Pengchao Zhang (张鹏超)
  • Ruirui Shi (史蕊蕊)
  • Yichao Xu (许一超)
  • Longhao Zhang (张龙昊)
  • Ruochen Fang (房若辰)
  • Tianyi Zhao (赵天艺)Email author
  • Shuanhu Qi (齐栓虎)
  • Lei Jiang (江雷)
  • Mingjie Liu (刘明杰)Email author


Nanocomposite fibers have attracted intensive attentions owing to their promising applications in various fields. However, the fabrication of nanocomposite fibers with super toughness and strong strength under mild conditions remains a great challenge. Here we present a facile flow-induced assembly strategy for the development of super-tough and strong nanocomposite fibers with highly ordered carbon nanotubes (CNTs), which can be induced by directional and fast flow on a grooved hydrogel surface. The prepared nanocomposite fibers show excellent mechanical properties, with a tensile strength up to 643±27 MPa and toughness as high as 77.3±3.4 MJ m−3 at ultimate strain of 14.8±1.5%. This versatile and efficient flow-induced alignment strategy represents a promising direction for the development of high-performance nanocomposites for practical applications.


CNTs nanocomposite fibers hydrogel surfaces flowinduced assembly super-toughness 

水凝胶表面沟槽内液流诱导制备具有取向碳纳米 管的超韧高强纳米复合纤维


纳米复合纤维由于其广泛的应用前景受到科学家的关注. 但 是在温和条件下制备具有优异断裂韧性与高强度的纳米复合纤维 仍然面临很大的挑战. 本文中, 我们展示了一种简单的基于液流组 装的策略用于制备具有超高断裂韧性与强度的纳米复合纤维. 在 准液态的水凝胶表面和重力的双重作用下, 含有碳纳米管的水溶 液可以沿水凝胶沟槽极快速地流动, 从而诱导碳纳米管取向排列. 我们制备出的纳米复合纤维拉伸强度和断裂韧性分别高达643± 27 MPa和77.3±3.4 MJ m−3, 极限断裂伸长率14.8±1.5%. 这种具有较 强普适性和高效率的液流诱导取向策略为高性能纳米复合纤维的 实际应用提供了新的可行的发展方向.



This research was supported by the National Key R&D Program of China (2017YFA0207800), the National Natural Science Foundation of China (21574004), the National Natural Science Funds for Distinguished Young Scholar (21725401), the 111 project (B14009), the Fundamental Research Funds for the Central Universities, the National “Young Thousand Talents Program”, and the China Postdoctoral Science Foundation (2017M620012).

Supplementary material

40843_2019_9421_MOESM1_ESM.pdf (1.5 mb)
Supplementary Materials for


  1. 1.
    Addadi L, Weiner S. A pavement of pearl. Nature, 1997, 389: 912–913CrossRefGoogle Scholar
  2. 2.
    Mayer G. Rigid biological systems as models for synthetic composites. Science, 2005, 310: 1144–1147CrossRefGoogle Scholar
  3. 3.
    Kim HN, Jiao A, Hwang NS, et al. Nanotopography-guided tissue engineering and regenerative medicine. Adv Drug Deliver Rev, 2013, 65: 536–558CrossRefGoogle Scholar
  4. 4.
    Keene DR. Ultrastructure of type VI collagen in human skin and cartilage suggests an anchoring function for this filamentous network. J Cell Biol, 1988, 107: 1995–2006CrossRefGoogle Scholar
  5. 5.
    Zhao Z, Fang R, Rong Q, et al. Bioinspired nanocomposite hydrogels with highly ordered structures. Adv Mater, 2017, 29: 1703045CrossRefGoogle Scholar
  6. 6.
    Wegst UGK, Bai H, Saiz E, et al. Bioinspired structural materials. Nat Mater, 2015, 14: 23–36CrossRefGoogle Scholar
  7. 7.
    Gao HL, Chen SM, Mao LB, et al. Mass production of bulk artificial nacre with excellent mechanical properties. Nat Commun, 2017, 8: 287Google Scholar
  8. 8.
    Mao LB, Gao HL, Yao HB, et al. Synthetic nacre by predesigned matrix-directed mineralization. Science, 2016, 354: 107–110CrossRefGoogle Scholar
  9. 9.
    Cui Y, Gong H, Wang Y, et al. A thermally insulating textile inspired by polar bear hair. Adv Mater, 2018, 30: 1706807CrossRefGoogle Scholar
  10. 10.
    Du G, Mao A, Yu J, et al. Nacre-mimetic composite with intrinsic self-healing and shape-programming capability. Nat Commun, 2019, 10: 800CrossRefGoogle Scholar
  11. 11.
    Lu W, Zu M, Byun JH, et al. State of the art of carbon nanotube fibers: opportunities and challenges. Adv Mater, 2012, 24: 1805–1833CrossRefGoogle Scholar
  12. 12.
    Miaudet P, Badaire S, Maugey M, et al. Hot-drawing of single and multiwall carbon nanotube fibers for high toughness and alignment. Nano Lett, 2005, 5: 2212–2215CrossRefGoogle Scholar
  13. 13.
    Dalton AB, Collins S, Muñoz E, et al. Super-tough carbon-nanotube fibres. Nature, 2003, 423: 703CrossRefGoogle Scholar
  14. 14.
    Vigolo B. Macroscopic fibers and ribbons of oriented carbon nanotubes. Science, 2000, 290: 1331–1334CrossRefGoogle Scholar
  15. 15.
    Jiang K, Li Q, Fan S. Spinning continuous carbon nanotube yarns. Nature, 2002, 419: 801CrossRefGoogle Scholar
  16. 16.
    Zhang M, Atkinson KR, Baughman RH. Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science, 2004, 306: 1358–1361CrossRefGoogle Scholar
  17. 17.
    Li YL, Kinloch IA, Windle AH. Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science, 2004, 304: 276–278CrossRefGoogle Scholar
  18. 18.
    Lu Z, Foroughi J, Wang C, et al. Superelastic hybrid CNT/graphene fibers for wearable energy storage. Adv Energy Mater, 2017, 8: 1702047CrossRefGoogle Scholar
  19. 19.
    Wang R, Sun J, Gao L, et al. Fibrous nanocomposites of carbon nanotubes and graphene-oxide with synergetic mechanical and actuative performance. Chem Commun, 2011, 47: 8650–8652CrossRefGoogle Scholar
  20. 20.
    Shin MK, Lee B, Kim SH, et al. Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes. Nat Commun, 2012, 3: 650CrossRefGoogle Scholar
  21. 21.
    Xin G, Zhu W, Deng Y, et al. Microfluidics-enabled orientation and microstructure control of macroscopic graphene fibres. Nat Nanotech, 2019, 14: 168–175CrossRefGoogle Scholar
  22. 22.
    Mittal N, Ansari F, Gowda V K, et al. Multiscale control of nanocellulose assembly: transferring remarkable nanoscale fibril mechanics to macroscale fibers. ACS Nano, 2018, 12: 6378–6388CrossRefGoogle Scholar
  23. 23.
    Mittal N, Jansson R, Widhe M, et al. Ultrastrong and bioactive nanostructured bio-based composites. ACS Nano, 2017, 11: 5148–5159CrossRefGoogle Scholar
  24. 24.
    Håkansson KMO, Fall AB, Lundell F, et al. Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments. Nat Commun, 2014, 5: 4018CrossRefGoogle Scholar
  25. 25.
    Ma T, Gao HL, Cong HP, et al. A bioinspired interface design for improving the strength and electrical conductivity of graphenebased fibers. Adv Mater, 2018, 30: 1706435CrossRefGoogle Scholar
  26. 26.
    Dong Z, Jiang C, Cheng H, et al. Facile fabrication of light, flexible and multifunctional graphene fibers. Adv Mater, 2012, 24: 1856–1861CrossRefGoogle Scholar
  27. 27.
    Papthanasiou TD, Guell DC. Flow-Induced Alignment in Composite Materials. Cambridge: Woodhead Publishing Ltd., 1997Google Scholar
  28. 28.
    Kataoka DE, Troian SM. Patterning liquid flow on the microscopic scale. Nature, 1999, 402: 794–797Google Scholar
  29. 29.
    Su B, Lu X, Lu Q. A facile method to prepare macroscopically oriented mesostructured silica film: controlling the orientation of mesochannels in multilayer films by air flow. J Am Chem Soc, 2008, 130: 14356–14357CrossRefGoogle Scholar
  30. 30.
    Zhang P, Zhang F, Zhao C, et al. Superspreading on immersed gel surfaces for the confined synthesis of thin polymer films. Angew Chem Int Ed, 2016, 55: 3615–3619CrossRefGoogle Scholar
  31. 31.
    Zhao C, Zhang P, Gu Z, et al. Superspreading-based fabrication of asymmetric porous PAA-g-PVDF membranes for efficient water flow gating. Adv Mater Interfaces, 2016, 3: 1600615CrossRefGoogle Scholar
  32. 32.
    Hao Q, Zhao C, Sun B, et al. Confined synthesis of two-dimensional covalent organic framework thin films within superspreading water layer. J Am Chem Soc, 2018, 140: 12152–12158CrossRefGoogle Scholar
  33. 33.
    Xie L, Jiang M, Dong X, et al. Controlled mechanical and swelling properties of poly(vinyl alcohol)/sodium alginate blend hydrogels prepared by freeze-thaw followed by Ca2+ crosslinking. J Appl Polym Sci, 2012, 124: 823–831CrossRefGoogle Scholar
  34. 34.
    Gunes DZ, Scirocco R, Mewis J, et al. Flow-induced orientation of non-spherical particles: effect of aspect ratio and medium rheology. J Non-Newtonian Fluid Mech, 2008, 155: 39–50CrossRefGoogle Scholar
  35. 35.
    Chen SM, Gao HL, Zhu YB, et al. Biomimetic twisted plywood structural materials. Natl Sci Rev, 2018, 5: 703–714CrossRefGoogle Scholar
  36. 36.
    Wang JL, Hassan M, Liu JW, et al. Nanowire assemblies for flexible electronic devices: recent advances and perspectives. Adv Mater, 2018, 30: 1803430CrossRefGoogle Scholar
  37. 37.
    Song P, Qin H, Gao HL, et al. Self-healing and superstretchable conductors from hierarchical nanowire assemblies. Nat Commun, 2018, 9: 2786CrossRefGoogle Scholar
  38. 38.
    Zhang Y, Peng J, Li M, et al. Bioinspired supertough graphene fiber through sequential interfacial interactions. ACS Nano, 2018, 12: 8901–8908CrossRefGoogle Scholar
  39. 39.
    Pan XF, Gao HL, Lu Y, et al. Transforming ground mica into highperformance biomimetic polymeric mica film. Nat Commun, 2018, 9: 2974CrossRefGoogle Scholar
  40. 40.
    Zhao N, Yang M, Zhao Q, et al. Superstretchable nacre-mimetic graphene/poly(vinyl alcohol) composite film based on interfacial architectural engineering. ACS Nano, 2017, 11: 4777–4784CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Chuangqi Zhao (赵创奇)
    • 1
  • Pengchao Zhang (张鹏超)
    • 1
  • Ruirui Shi (史蕊蕊)
    • 1
  • Yichao Xu (许一超)
    • 1
  • Longhao Zhang (张龙昊)
    • 1
  • Ruochen Fang (房若辰)
    • 1
  • Tianyi Zhao (赵天艺)
    • 1
    Email author
  • Shuanhu Qi (齐栓虎)
    • 1
  • Lei Jiang (江雷)
    • 1
  • Mingjie Liu (刘明杰)
    • 1
    • 2
    • 3
    Email author
  1. 1.Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of ChemistryBeihang UniversityBeijingChina
  2. 2.International Research Institute for Multidisciplinary ScienceBeihang UniversityBeijingChina
  3. 3.Beijing Advanced Innovation Center for Biomedical EngineeringBeihang UniversityBeijingChina

Personalised recommendations