Advertisement

The bond evolution mechanism of covalent sulfurized carbon during electrochemical sodium storage process

  • Tianjing Wu (吴天景)
  • Chenyang Zhang (张晨阳)
  • Guoqiang Zou (邹国强)
  • Jiugang Hu (胡久刚)
  • Limin Zhu (朱利敏)
  • Xiaoyu Cao (曹晓雨)Email author
  • Hongshuai Hou (侯红帅)
  • Xiaobo Ji (纪效波)Email author
Articles
  • 50 Downloads

Abstract

The excellent energy storage performance of covalent sulfur-carbon material has gradually attracted great interest. However, in the electrochemical sodium storage process, the bond evolution mechanism remains an elusive topic. Herein, we develop a one-step annealing strategy to achieve a high covalent sulfur-carbon bridged hybrid (HCSC) utilizing phenylphosphinic acid as the carbon-source/catalyst and sodium sulfate as the sulfur-precursor/salt template, in which the sulfur mainly exists in the forms of C–S–C and C–S–S–C. Notably, most of the bridge bonds are electrochemically cleaved when the cycling voltage is lower than 0.6 V versus Na/Na+, leading to the appearance of two visible redox peaks in the following cyclic voltammogram (CV) tests. The in-situ and ex-situ characterizations demonstrate that S2− is formed in the reduction process and the carbon skeleton is concomitantly and irreversibly isomerized. Thus, the cleaved sulfur and isomerized carbon could jointly contribute to the sodium storage in 0.01–3.0 V. In a Na-S battery system, the activated HCSC in cut off voltage window of 0.6–2.8 V achieves a high reversible capacity (770 mA h g−1 at 300 mA g−1). This insight reveals the charge storage mechanism of sulfur-carbon bridged hybrid and provides an improved enlightenment on the interfacial chemistry of electrode materials.

Keywords

one-step method sulfur-carbon bridged complex electrochemical mechanism sodium storage 

共价硫碳材料在储能过程中的价键演变机制

概要

共价硫碳材料优异的储能性能逐渐引起人们的极大关注, 然 而, 在电化学钠储存过程中, 化学键的演变机制尚不清楚. 本文以苯 基磷酸作为碳源和催化剂, 硫酸钠为硫源和模板, 通过高温热处理, 成功制备了具有大量共价键的硫碳材料(HCSC), 其中硫主要以C–S–C和C–S–S–C的短链形式存在. 值得注意的是, 在储钠过程中, 当 循环电压低于0.6 V时, 大多数桥键会发生电化学裂解, 导致在接下 来的CV测试中出现了两个可见的氧化还原峰. 原位和非原位测试 表明, 在还原过程中形成了S2−, 同时碳骨架也发生了不可逆的异构 化. 因此, 在接下来的循环过程中(0.01–3.0 V), 裂解硫和异构化碳 可以共同参与钠的存储. 同样, 应用于Na-S电池系统中, 电压窗口 为0.6–2.8 V, 在宽电压窗口活化的HCSC也表现出较高的可逆容量 (770 mA h g−1 at 300 mA g−1). 这一发现揭示了硫碳桥联化合物的 储能机理, 也为其他电极材料的表界面化学提供了新的启示.

Notes

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2017YFB0102003 and 2018YFB0104204), the National Natural Science Foundation of China (51622406, 21673298 and 21473258), Young Elite Scientists Sponsorship Program By CAST (2017QNRC001), the Project of Innovation Driven Plan in Central South (2017CX004 and 2018CX005), and the Program for Innovative Team (in Science and Technology) in the University of Henan Province of China (17IRTSTHN003). This work was carried out in part using hardware and/or software provided by Tianhe II super computer in the National Supercomputing Center in Guangzhou, and the High-Performance Computing Centers of Central South University and Nanjing University.

Supplementary material

40843_2019_9418_MOESM1_ESM.pdf (1.8 mb)
Supporting Information

References

  1. 1.
    Guo Q, Ma Y, Chen T, et al. Cobalt sulfide quantum dot embedded N/S-doped carbon nanosheets with superior reversibility and rate capability for sodium-ion batteries. ACS Nano, 2017, 11: 12658–12667CrossRefGoogle Scholar
  2. 2.
    Li Z, Chen Y, Jian Z, et al. Defective hard carbon anode for Na-ion batteries. Chem Mater, 2018, 30: 4536–4542CrossRefGoogle Scholar
  3. 3.
    Xin S, Gu L, Zhao NH, et al. Smaller sulfur molecules promise better lithium–sulfur batteries. J Am Chem Soc, 2012, 134: 18510–18513CrossRefGoogle Scholar
  4. 4.
    Tan G, Xu R, Xing Z, et al. Burning lithium in CS2 for highperforming compact Li2S–graphene nanocapsules for Li–S batteries. Nat Energy, 2017, 2: 17090CrossRefGoogle Scholar
  5. 5.
    Fan L, Ma R, Yang Y, et al. Covalent sulfur for advanced room temperature sodium-sulfur batteries. Nano Energy, 2016, 28: 304–310CrossRefGoogle Scholar
  6. 6.
    Yang CP, Yin YX, Guo YG, et al. Electrochemical (de)lithiation of 1D sulfur chains in Li–S batteries: a model system study. J Am Chem Soc, 2015, 137: 2215–2218CrossRefGoogle Scholar
  7. 7.
    Yang J, Zhou X, Wu D, et al. S-doped N-rich carbon nanosheets with expanded interlayer distance as anode materials for sodiumion batteries. Adv Mater, 2017, 29: 1604108CrossRefGoogle Scholar
  8. 8.
    Xu D, Chen C, Xie J, et al. A hierarchical N/S-codoped carbon anode fabricated facilely from cellulose/polyaniline microspheres for high-performance sodium-ion batteries. Adv Energy Mater, 2016, 6: 1501929CrossRefGoogle Scholar
  9. 9.
    Wang YX, Yang J, Lai W, et al. Achieving high-performance roomtemperature sodium–sulfur batteries with S@interconnected me-soporous carbon hollow nanospheres. J Am Chem Soc, 2016, 138: 16576–16579CrossRefGoogle Scholar
  10. 10.
    Qie L, Chen W, Xiong X, et al. Sulfur-doped carbon with enlarged interlayer distance as a high-performance anode material for sodium-ion batteries. Adv Sci, 2015, 2Google Scholar
  11. 11.
    Tuček J, Błoński P, Sofer Z, et al. Sulfur doping induces strong ferromagnetic ordering in graphene: effect of concentration and substitution mechanism. Adv Mater, 2016, 28: 5045–5053Google Scholar
  12. 12.
    Xin S, Yin YX, Guo YG, et al. A high-energy room-temperature sodium-sulfur battery. Adv Mater, 2014, 26: 1261–1265CrossRefGoogle Scholar
  13. 13.
    Wang YX, Zhang B, Lai W, et al. Room-temperature sodiumsulfur batteries: a comprehensive review on research progress and cell chemistry. Adv Energy Mater, 2017, 7: 1602829CrossRefGoogle Scholar
  14. 14.
    Conder J, Bouchet R, Trabesinger S, et al. Direct observation of lithium polysulfides in lithium–sulfur batteries using operando Xray diffraction. Nat Energy, 2017, 2: 17069CrossRefGoogle Scholar
  15. 15.
    Yu X, Manthiram A. Performance enhancement and mechanistic studies of room-temperature sodium–sulfur batteries with a carbon-coated functional nafion separator and a Na2S/activated carbon nanofiber cathode. Chem Mater, 2016, 28: 896–905CrossRefGoogle Scholar
  16. 16.
    Wang X, Li G, Hassan FM, et al. Sulfur covalently bonded graphene with large capacity and high rate for high-performance sodium-ion batteries anodes. Nano Energy, 2015, 15: 746–754CrossRefGoogle Scholar
  17. 17.
    Poh HL, Šimek P, Sofer Z, et al. Sulfur-doped graphene via thermal exfoliation of graphite oxide in H2S, SO2, or CS2 gas. ACS Nano, 2013, 7: 5262–5272CrossRefGoogle Scholar
  18. 18.
    Graczyk PP, Mikolajczyk M. Inapplicability of the antiperiplanar lone pair hypothesis to C−P bond breaking and formation in some S−C−P+ systems. J Org Chem, 1996, 61: 2995–3002CrossRefGoogle Scholar
  19. 19.
    Okuma K, Shigetomi T, Nibu Y, et al. Synthesis of isolable thiirane-2-thione (α-dithiolactone) from thioketene S-oxide. J Am Chem Soc, 2004, 126: 9508–9509CrossRefGoogle Scholar
  20. 20.
    Juaristi E, Notario R. Theoretical examination of the S–C–P anomeric effect. J Org Chem, 2015, 80: 2879–2883CrossRefGoogle Scholar
  21. 21.
    Legnani L, Toma L, Caramella P, et al. Computational mechanistic study of thionation of carbonyl compounds with Lawesson’s reagent. J Org Chem, 2016, 81: 7733–7740CrossRefGoogle Scholar
  22. 22.
    Yu X, Xie J, Yang J, et al. Lithium storage in conductive sulfurcontaining polymers. J Electroanal Chem, 2004, 573: 121–128Google Scholar
  23. 23.
    Sainbileg B, Lan YB, Wang JK, et al. Deciphering anomalous Raman features of regioregular poly(3-hexylthiophene) in ordered aggregation form. J Phys Chem C, 2018, 122: 4224–4231CrossRefGoogle Scholar
  24. 24.
    Raccichini R, Varzi A, Passerini S, et al. The role of graphene for electrochemical energy storage. Nat Mater, 2014, 14: 271–279CrossRefGoogle Scholar
  25. 25.
    Pachfule P, Shinde D, Majumder M, et al. Fabrication of carbon nanorods and graphene nanoribbons from a metal–organic framework. Nat Chem, 2016, 8: 718–724CrossRefGoogle Scholar
  26. 26.
    Kumar R, Pillai RG, Pekas N, et al. Spatially resolved raman spectroelectrochemistry of solid-state polythiophene/viologen memory devices. J Am Chem Soc, 2012, 134: 14869–14876CrossRefGoogle Scholar
  27. 27.
    Xu J, Wang M, Wickramaratne NP, et al. High-performance sodium ion batteries based on a 3D anode from nitrogen-doped graphene foams. Adv Mater, 2015, 27: 2042–2048CrossRefGoogle Scholar
  28. 28.
    Ghanty TK, Ghosh SK. Simple density functional approach to polarizability, hardness, and covalent radius of atomic systems. J Phys Chem, 1994, 98: 9197–9201CrossRefGoogle Scholar
  29. 29.
    Zhou G, Paek E, Hwang GS, et al. Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge. Nat Commun, 2015, 6: 7760CrossRefGoogle Scholar
  30. 30.
    Shi X, Chen Y, Lai Y, et al. Metal organic frameworks templated sulfur-doped mesoporous carbons as anode materials for advanced sodium ion batteries. Carbon, 2017, 123: 250–258CrossRefGoogle Scholar
  31. 31.
    Cao Y, Xiao L, Sushko ML, et al. Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett, 2012, 12: 3783–3787CrossRefGoogle Scholar
  32. 32.
    Ding J, Wang H, Li Z, et al. Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano, 2013, 7: 11004–11015CrossRefGoogle Scholar
  33. 33.
    Carter R, Oakes L, Douglas A, et al. A sugar-derived room-temperature sodium sulfur battery with long term cycling stability. Nano Lett, 2017, 17: 1863–1869CrossRefGoogle Scholar
  34. 34.
    Yu X, Manthiram A. Na2S-carbon nanotube fabric electrodes for room-temperature sodium-sulfur batteries. Chem Eur J, 2015, 21: 4233–4237CrossRefGoogle Scholar
  35. 35.
    Wei S, Xu S, Agrawral A, et al. A stable room-temperature sodium–sulfur battery. Nat Commun, 2016, 7: 11722CrossRefGoogle Scholar
  36. 36.
    Qiang Z, Chen YM, Xia Y, et al. Ultra-long cycle life, low-cost room temperature sodium-sulfur batteries enabled by highly doped (N,S) nanoporous carbons. Nano Energy, 2017, 32: 59–66CrossRefGoogle Scholar
  37. 37.
    Kim H, Hong J, Yoon G, et al. Sodium intercalation chemistry in graphite. Energy Environ Sci, 2015, 8: 2963–2969CrossRefGoogle Scholar
  38. 38.
    Placke T, Schmuelling G, Kloepsch R, et al. In situ X-ray diffraction studies of cation and anion intercalation into graphitic carbons for electrochemical energy storage applications. Z anorg allg Chem, 2014, 640: 1996–2006CrossRefGoogle Scholar
  39. 39.
    Yu X, Manthiram A. Room-temperature sodium–sulfur batteries with liquid-phase sodium polysulfide catholytes and binder-free multiwall carbon nanotube fabric electrodes. J Phys Chem C, 2014, 118: 22952–22959CrossRefGoogle Scholar
  40. 40.
    Park J, Yu BC, Park JS, et al. Tungsten disulfide catalysts supported on a carbon cloth interlayer for high performance Li-S battery. Adv Energy Mater, 2017, 7: 1602567CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Tianjing Wu (吴天景)
    • 1
  • Chenyang Zhang (张晨阳)
    • 1
  • Guoqiang Zou (邹国强)
    • 1
  • Jiugang Hu (胡久刚)
    • 1
  • Limin Zhu (朱利敏)
    • 2
  • Xiaoyu Cao (曹晓雨)
    • 2
    Email author
  • Hongshuai Hou (侯红帅)
    • 1
  • Xiaobo Ji (纪效波)
    • 1
    Email author
  1. 1.Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical EngineeringCentral South UniversityChangshaChina
  2. 2.College of ChemistryHenan University of TechnologyZhengzhouChina

Personalised recommendations