Fluorination-modulated end units for high-performance non-fullerene acceptors based organic solar cells

  • Yanna Sun (孙延娜)
  • Huan-Huan Gao (高欢欢)
  • Yuan-Qiu-Qiang Yi (易袁秋强)
  • Xiangjian Wan (万相见)
  • Huanran Feng (冯焕然)
  • Xin Ke (柯鑫)
  • Yamin Zhang (张雅敏)
  • Jing Yan (燕晶)
  • Chenxi Li (李晨曦)
  • Yongsheng Chen (陈永胜)Email author



本文设计合成了三个受体-给体-受体骨架的非富勒烯受体, 它们具有不同数目氟原子修饰的端基, 将其分别命名为OBTT-0F, OBTT-2F和OBTT-4F. 氟端基使得最低未占分子轨道下移, 光谱红 移, π-π堆叠和非富勒烯受体的结晶性增强. 通过与聚合物给体 PBDB-T共混, 基于OBTT-2F的分子同时获得了相对高的电流 (20.83 mA cm−2)和能量转换效率(12.36%). 该结果证明向端基上引 入氟原子是调控非富勒烯受体光电性能和光伏效率的简单有效的 方法.



This work was supported by the Ministry of Science and Technology (2016YFA0200200), the National Natural Science Foundation of China (91633301 and 51773095), the Natural Science Foundation of Tianjin City (17JCJQJC44500 and 17CZDJC31100) and 111 Project (B12015). This work is dedicated to the 100th anniversary of Nankai University.

Supplementary material

40843_2019_9415_MOESM1_ESM.pdf (619 kb)
Supplementary information


  1. 1.
    Yu G, Gao J, Hummelen JC, et al. Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science, 1995, 270: 1789–1791CrossRefGoogle Scholar
  2. 2.
    Li G, Zhu R, Yang Y. Polymer solar cells. Nat Photon, 2012, 6: 153–161CrossRefGoogle Scholar
  3. 3.
    Lin Y, Zhan X. Oligomer molecules for efficient organic photovoltaics. Acc Chem Res, 2016, 49: 175–183CrossRefGoogle Scholar
  4. 4.
    Hou J, Inganäs O, Friend RH, et al. Organic solar cells based on non-fullerene acceptors. Nat Mater, 2018, 17: 119–128CrossRefGoogle Scholar
  5. 5.
    Cheng P, Li G, Zhan X, et al. Next-generation organic photovoltaics based on non-fullerene acceptors. Nat Photon, 2018, 12: 131–142CrossRefGoogle Scholar
  6. 6.
    Zhang G, Zhao J, Chow PCY, et al. Nonfullerene acceptor molecules for bulk heterojunction organic solar cells. Chem Rev, 2018, 118: 3447–3507CrossRefGoogle Scholar
  7. 7.
    Nielsen CB, Holliday S, Chen HY, et al. Non-fullerene electron acceptors for use in organic solar cells. Acc Chem Res, 2015, 48: 2803–2812CrossRefGoogle Scholar
  8. 8.
    Chen Y, Wan X, Long G. High performance photovoltaic applications using solution-processed small molecules. Acc Chem Res, 2013, 46: 2645–2655CrossRefGoogle Scholar
  9. 9.
    Yang Y, Wang K, Li G, et al. Fluorination triggered new small molecule donor materials for efficient as-cast organic solar cells. Small, 2018, 14: 1801542CrossRefGoogle Scholar
  10. 10.
    Xiao B, Tang A, Yang J, et al. Quinoxaline-containing nonfullerene small-molecule acceptors with a linear A2-A1-D-A1-A2 skeleton for poly(3-hexylthiophene)-based organic solar cells. ACS Appl Mater Interfaces, 2018, 10: 10254–10261CrossRefGoogle Scholar
  11. 11.
    Tang A, Xiao B, Wang Y, et al. Simultaneously achieved high open-circuit voltage and efficient charge generation by fine-tuning charge-transfer driving force in nonfullerene polymer solar cells. Adv Funct Mater, 2018, 28: 1704507CrossRefGoogle Scholar
  12. 12.
    Li J, Yang J, Hu J, et al. The first thieno[3,4-b]pyrazine based small molecular acceptor with a linear A2–A1–D–A1–A2 skeleton for fullerene-free organic solar cells with a high Voc of 1.05 V. Chem Commun, 2018, 54: 10770–10773CrossRefGoogle Scholar
  13. 13.
    Tang A, Xiao B, Chen F, et al. The introduction of fluorine and sulfur atoms into benzotriazole-based p-type polymers to match with a benzotriazole-containing n-type small molecule: “The sameacceptor-strategy” to realize high open-circuit voltage. Adv Energy Mater, 2018, 8: 1801582CrossRefGoogle Scholar
  14. 14.
    Zhang Y, Yao H, Zhang S, et al. Fluorination vs. chlorination: A case study on high performance organic photovoltaic materials. Sci China Chem, 2018, 61: 1328–1337CrossRefGoogle Scholar
  15. 15.
    Zhang S, Qin Y, Zhu J, et al. Over 14% efficiency in polymer solar cells enabled by a chlorinated polymer donor. Adv Mater, 2018, 30: 1800868CrossRefGoogle Scholar
  16. 16.
    Zhang H, Yao H, Hou J, et al. Over 14% efficiency in organic solar cells enabled by chlorinated nonfullerene small-molecule acceptors. Adv Mater, 2018, 30: 1800613CrossRefGoogle Scholar
  17. 17.
    Kan B, Feng H, Yao H, et al. A chlorinated low-bandgap smallmolecule acceptor for organic solar cells with 14.1% efficiency and low energy loss. Sci China Chem, 2018, 61: 1307–1313CrossRefGoogle Scholar
  18. 18.
    Yuan J, Zhang Y, Zhou L, et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electrondeficient core. Joule, 2019, doi: 10.1016/j.joule.2019.01.004Google Scholar
  19. 19.
    Meng L, Zhang Y, Wan X, et al. Organic and solution-processed tandem solar cells with 17.3% efficiency. Science, 2018, 361: 1094–1098CrossRefGoogle Scholar
  20. 20.
    Zhu J, Ke Z, Zhang Q, et al. Naphthodithiophene-based nonfullerene acceptor for high-performance organic photovoltaics: Effect of extended conjugation. Adv Mater, 2018, 30: 1704713CrossRefGoogle Scholar
  21. 21.
    Gao W, Zhang M, Liu T, et al. Asymmetrical ladder-type donorinduced polar small molecule acceptor to promote fill factors approaching 77% for high-performance nonfullerene polymer solar cells. Adv Mater, 2018, 30: 1800052CrossRefGoogle Scholar
  22. 22.
    Zhao F, Dai S, Wu Y, et al. Single-junction binary-blend nonfullerene polymer solar cells with 12.1% efficiency. Adv Mater, 2017, 29: 1700144CrossRefGoogle Scholar
  23. 23.
    Yi YQQ, Feng H, Chang M, et al. New small-molecule acceptors based on hexacyclic naphthalene(cyclopentadithiophene) for efficient non-fullerene organic solar cells. J Mater Chem A, 2017, 5: 17204–17210CrossRefGoogle Scholar
  24. 24.
    Yao H, Ye L, Hou J, et al. Achieving highly efficient nonfullerene organic solar cells with improved intermolecular interaction and open-circuit voltage. Adv Mater, 2017, 29: 1700254CrossRefGoogle Scholar
  25. 25.
    Xu SJ, Zhou Z, Liu W, et al. A twisted thieno[3,4-b]thiophenebased electron acceptor featuring a 14-π-electron indenoindene core for high-performance organic photovoltaics. Adv Mater, 2017, 29: 1704510CrossRefGoogle Scholar
  26. 26.
    Ma Y, Zhang M, Yan Y, et al. Ladder-type dithienonaphthalenebased small-molecule acceptors for efficient nonfullerene organic solar cells. Chem Mater, 2017, 29: 7942–7952CrossRefGoogle Scholar
  27. 27.
    Li Y, Zhong L, Gautam B, et al. A near-infrared non-fullerene electron acceptor for high performance polymer solar cells. Energy Environ Sci, 2017, 10: 1610–1620CrossRefGoogle Scholar
  28. 28.
    Kan B, Feng H, Wan X, et al. Small-molecule acceptor based on the heptacyclic benzodi(cyclopentadithiophene) unit for highly efficient nonfullerene organic solar cells. J Am Chem Soc, 2017, 139: 4929–4934CrossRefGoogle Scholar
  29. 29.
    Dai S, Zhao F, Zhang Q, et al. Fused nonacyclic electron acceptors for efficient polymer solar cells. J Am Chem Soc, 2017, 139: 1336–1343CrossRefGoogle Scholar
  30. 30.
    Zhao W, Qian D, Zhang S, et al. Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability. Adv Mater, 2016, 28: 4734–4739CrossRefGoogle Scholar
  31. 31.
    Lin Y, Li T, Zhao F, et al. Structure evolution of oligomer fusedring electron acceptors toward high efficiency of as-cast polymer solar cells. Adv Energy Mater, 2016, 6: 1600854CrossRefGoogle Scholar
  32. 32.
    Lin Y, Wang J, Zhang ZG, et al. An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv Mater, 2015, 27: 1170–1174CrossRefGoogle Scholar
  33. 33.
    Wang J, Zhang J, Xiao Y, et al. Effect of isomerization on highperformance nonfullerene electron acceptors. J Am Chem Soc, 2018, 140: 9140–9147CrossRefGoogle Scholar
  34. 34.
    Zhao W, Ye L, Li S, et al. Environmentally-friendly solvent processed fullerene-free organic solar cells enabled by screening halogen-free solvent additives. Sci China Mater, 2017, 60: 697–706CrossRefGoogle Scholar
  35. 35.
    Gao HH, Sun Y, Wan X, et al. Design and synthesis of low band gap non-fullerene acceptors for organic solar cells with impressively high Jsc over 21 mA cm−2. Sci China Mater, 2017, 60: 819–828CrossRefGoogle Scholar
  36. 36.
    Shi X, Chen J, Gao K, et al. Terthieno[3,2-b]thiophene (6T) based low bandgap fused-ring electron acceptor for highly efficient solar cells with a high short-circuit current density and low open-circuit voltage loss. Adv Energy Mater, 2018, 8: 1702831CrossRefGoogle Scholar
  37. 37.
    Chen Y, Liu T, Hu H, et al. Modulation of end groups for lowbandgap nonfullerene acceptors enabling high-performance organic solar cells. Adv Energy Mater, 2018, 8: 1801203CrossRefGoogle Scholar
  38. 38.
    Feng H, Qiu N, Wang X, et al. An A-D-A type small-molecule electron acceptor with end-extended conjugation for high performance organic solar cells. Chem Mater, 2017, 29: 7908–7917CrossRefGoogle Scholar
  39. 39.
    Luo Z, Bin H, Liu T, et al. Fine-tuning of molecular packing and energy level through methyl substitution enabling excellent small molecule acceptors for nonfullerene polymer solar cells with efficiency up to 12.54%. Adv Mater, 2018, 30: 1706124CrossRefGoogle Scholar
  40. 40.
    Zhao W, Li S, Yao H, et al. Molecular optimization enables over 13% efficiency in organic solar cells. J Am Chem Soc, 2017, 139: 7148–7151CrossRefGoogle Scholar
  41. 41.
    Li S, Ye L, Zhao W, et al. Significant influence of the methoxyl substitution position on optoelectronic properties and molecular packing of small-molecule electron acceptors for photovoltaic cells. Adv Energy Mater, 2017, 7: 1700183CrossRefGoogle Scholar
  42. 42.
    Li S, Ye L, Zhao W, et al. Design of a new small-molecule electron acceptor enables efficient polymer solar cells with high fill factor. Adv Mater, 2017, 29: 1704051CrossRefGoogle Scholar
  43. 43.
    Babudri F, Farinola GM, Naso F, et al. Fluorinated organic materials for electronic and optoelectronic applications: The role of the fluorine atom. Chem Commun, 2007, 105: 1003–1022CrossRefGoogle Scholar
  44. 44.
    Tang ML, Bao Z. Halogenated materials as organic semiconductors. Chem Mater, 2011, 23: 446–455CrossRefGoogle Scholar
  45. 45.
    Sakamoto Y, Komatsu S, Suzuki T. Tetradecafluorosexithiophene: The first perfluorinated oligothiophene. J Am Chem Soc, 2001, 123: 4643–4644CrossRefGoogle Scholar
  46. 46.
    Lei T, Xia X, Wang JY, et al. “Conformation locked” strong electron-deficient poly(p-phenylene vinylene) derivatives for ambientstable n-type field-effect transistors: Synthesis, properties, and effects of fluorine substitution position. J Am Chem Soc, 2014, 136: 2135–2141CrossRefGoogle Scholar
  47. 47.
    Kim HG, Kang B, Ko H, et al. Synthetic tailoring of solid-state order in diketopyrrolopyrrole-based copolymers via intramolecular noncovalent interactions. Chem Mater, 2015, 27: 829–838CrossRefGoogle Scholar
  48. 48.
    Sun SX, Huo Y, Li MM, et al. Understanding the halogenation effects in diketopyrrolopyrrole-based small molecule photovoltaics. ACS Appl Mater Interfaces, 2015, 7: 19914–19922CrossRefGoogle Scholar
  49. 49.
    Zhang ZG, Qi B, Jin Z, et al. Perylene diimides: A thicknessinsensitive cathode interlayer for high performance polymer solar cells. Energy Environ Sci, 2014, 7: 1966CrossRefGoogle Scholar
  50. 50.
    Yi YQQ, Feng H, Zheng N, et al. Small molecule acceptors with a nonfused architecture for high-performance organic photovoltaics. Chem Mater, 2019, 31: 904–911CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yanna Sun (孙延娜)
    • 1
  • Huan-Huan Gao (高欢欢)
    • 1
  • Yuan-Qiu-Qiang Yi (易袁秋强)
    • 1
  • Xiangjian Wan (万相见)
    • 1
  • Huanran Feng (冯焕然)
    • 1
  • Xin Ke (柯鑫)
    • 1
  • Yamin Zhang (张雅敏)
    • 1
  • Jing Yan (燕晶)
    • 1
  • Chenxi Li (李晨曦)
    • 1
  • Yongsheng Chen (陈永胜)
    • 1
    Email author
  1. 1.The Key Laboratory of Functional Polymer Materials, State Key Laboratory and Institute of Elemento-Organic Chemistry, Centre of Nanoscale Science and Technology, College of ChemistryNankai UniversityTianjinChina

Personalised recommendations