Synthesis, characterization, and theoretical analysis of three new nonlinear optical materials K7MRE2B15O30 (M= Ca and Ba, RE= La and Bi)

  • Zhiqing Xie (解植擎)
  • Ying Wang (王颖)
  • Shichao Cheng (程世超)
  • Guopeng Han (韩国鹏)
  • Zhihua Yang (杨志华)
  • Shilie Pan (潘世烈)Email author


Three new complex borate compounds K7CaBi2B15O30, K7CaLa2B15O30 and K7BaBi2B15O30 have been synthesized by the high-temperature solution method. K7CaLa2B15O30 and K7CaBi2B15O30 crystallize in the chiral trigonal space group R32, while K7BaBi2B15O30 crystallizes in the noncentrosymmetric orthorhombic polar space group Pca21. All of the title compounds have similar three-dimensional crystal structures, which are composed of isolated B5O10 groups and LaO6 or BiO6 octahedra, and K+, Ca2+, and Ba2+ cations fill into the cavities to keep charge balance. Based on our research, in the system of K7MIIRE2B15O30 (MII = Ca, Sr, Ba, Zn, Cd, Pb, K/RE0.5; RE = Sc, Y, La, Gd, Lu, Bi), K7BaBi2B15O30 is unique and crystallizes in a different space group, which enriches the structural chemistry of borate. Detailed structural analyses indicate that the structural variation is due to the difference in size and coordination number of the alkaline-earth metal cations. Besides, UV-Vis-NIR spectroscopy analysis and the second-harmonic generation (SHG) measurement on the powder samples show that K7CaBi2B15O30 exhibits a UV cutoff edge (about 282 nm) and a moderate SHG response (about 0.6 × KDP). In addition, thermal analysis and infrared spectroscopy were also presented. To better understand the structure-property relationships of the title compounds, the first-principles calculations have been performed.

新的非线性光学材料K7MRE2B15O30 (M= Ca and Ba, RE= La and Bi)的合成、表征和理论分析


本文采用高温熔液法合成了三种新型复合硼酸盐化合物K7CaBi2B15O30、K7CaLa2B15O30和K7BaBi2B15O30. K7CaLa2B15O30和K7CaBi2B15O30结晶于三方手性空间群R32中, K7BaBi2B15O30结晶于非中心对称正交极性空间群Pca21. 这三个化合物具有相似的三维晶体结构, 由孤立的B5O10基团和LaO6或BiO6八面体组成, K+、Ca2+、Ba2+阳离子填充于空隙中以保持电荷平衡. 根据我们的调研, 在K7MIIRE2B15O30体系内((MII = Ca, Sr, Ba, Zn, Cd, Pb, K/RE0.5; RE = Sc, Y, La, Gd, Lu, Bi), K7BaBi2B15O30是唯一一个结晶于不同空间群的化合物, 其丰富了硼酸盐的结构化学. 详细的结构分析表明, 碱土金属阳离子的尺寸和配位数的差异是导致结构变化的主要原因. 此外, UV-Vis-NIR光谱分析和倍频效应(SHG)测试表明K7CaBi2B15O30具有较短的截止边(大约282 nm)和适中的倍频效应(约0.6×KDP). 我们还进行了热重差热和红外光谱的测试. 为了更好地理解上述化合物的结构性能关系, 我们还进行了第一性原理计算.



This work is supported by the West Light Foundation of the CAS (2016-YJRC-2 and 2015 XBQN-B-11), the National Natural Science Foundation of China (51602341 and 91622107), the Natural Science Foundation of Xinjiang (2016D01B061), Tianshan Innovation Team Program (2018D14001), and Key research project of Frontier Science of CAS (QYZDB-SSW-JSC049).

Supplementary material

40843_2019_9412_MOESM1_ESM.pdf (2 mb)
Synthesis, Characterization, and Theoretical Analysis of Three New Nonlinear Optical Materials K7MRE2B15O30 (M= Ca and Ba, RE= La and Bi)


  1. 1.
    Chen CT, Sasaki T, Li RK, et al. Nonlinear Optical Borate Crystals: Principals and Applications. Weinheim: John Wiley & Sons, 2012CrossRefGoogle Scholar
  2. 2.
    Feng JH, Hu CL, Xia HP, et al. Li7(TeO3)3F: a lithium fluoride tellurite with large second harmonic generation responses and a short ultraviolet cutoff edge. Inorg Chem, 2017, 56: 14697–14705CrossRefGoogle Scholar
  3. 3.
    Wu H, Pan S, Poeppelmeier KR, et al. K3B6O10Cl: a new structure analogous to perovskite with a large second harmonic generation response and deep UV absorption edge. J Am Chem Soc, 2011, 133: 7786–7790CrossRefGoogle Scholar
  4. 4.
    Feng J, Xu X, Hu CL, et al. K6ACaSc2(B5O10)3 (A = Li, Na, Li0.7Na0.3): nonlinear-optical materials with short UV cutoff edges. Inorg Chem, 2019, 58: 2833–2839CrossRefGoogle Scholar
  5. 5.
    Zou G, Lin C, Jo H, et al. Pb2BO3Cl: a tailor-made polar lead borate chloride with very strong second harmonic generation. Angew Chem Int Ed, 2016, 55: 12078–12082CrossRefGoogle Scholar
  6. 6.
    Pan Y, Guo SP, Liu BW, et al. Second-order nonlinear optical crystals with mixed anions. Coord Chem Rev, 2018, 374: 464–496CrossRefGoogle Scholar
  7. 7.
    Zhang J, Shah SAA, Hao Y, et al. Weak fatigue notch sensitivity in a biomedical titanium alloy exhibiting nonlinear elasticity. Sci China Mater, 2018, 61: 537–544CrossRefGoogle Scholar
  8. 8.
    Chen CT, Wu BC, Jiang AD, You GM. A new-type ultraviolet SHG crystal β-BaB2O4. Sci Sin Ser B, 1985, 589: 235–243Google Scholar
  9. 9.
    Chen C, Wu Y, Jiang A, et al. New nonlinear-optical crystal: LiB3O5. J Opt Soc Am B, 1989, 6: 616–621CrossRefGoogle Scholar
  10. 10.
    Wu Y, Sasaki T, Nakai S, et al. CsB3O5: a new nonlinear optical crystal. Appl Phys Lett, 1993, 62: 2614–2615CrossRefGoogle Scholar
  11. 11.
    Tu JM, Keszler DA. CsLiB6O10: a noncentrosymmetric polyborate. Mater Res Bull, 1995, 30: 209–215CrossRefGoogle Scholar
  12. 12.
    Chen C, Xu Z, Deng D, et al. The vacuum ultraviolet phasematching characteristics of nonlinear optical KBe2BO3F2 crystal. Appl Phys Lett, 1996, 68: 2930–2932CrossRefGoogle Scholar
  13. 13.
    Chen C, Wang Y, Wu B, et al. Design and synthesis of an ultraviolet-transparent nonlinear optical crystal Sr2Be2B2O7. Nature, 1995, 373: 322–324CrossRefGoogle Scholar
  14. 14.
    Ye N, Zeng W, Jiang J, et al. New nonlinear optical crystal K2Al2B2O7. J Opt Soc Am B, 2000, 17: 764–768CrossRefGoogle Scholar
  15. 15.
    Bierlein JD, Arweiler CB. Electro-optic and dielectric properties of KTiOPO4. Appl Phys Lett, 1986, 49: 917–919CrossRefGoogle Scholar
  16. 16.
    Slater JC. Theory of the transition in KH2PO4. J Chem Phys, 1941, 9: 16–33CrossRefGoogle Scholar
  17. 17.
    Boyd G, Kasper H, McFee J. Linear and nonlinear optical properties of AgGaS2, CuGaS2, and CuInS2, and theory of the wedge technique for the measurement of nonlinear coefficients. IEEE J Quantum Electron, 1971, 7: 563–573CrossRefGoogle Scholar
  18. 18.
    Kildal H, Mikkelsen JC. The nonlinear optical coefficient, phasematching, and optical damage in the chalcopyrite AgGaSe2. Optics Commun, 1973, 9: 315–318CrossRefGoogle Scholar
  19. 19.
    Boyd GD, Buehler E, Storz FG. Linear and nonlinear optical properties of ZnGeP2 and CdSe. Appl Phys Lett, 1971, 18: 301–304CrossRefGoogle Scholar
  20. 20.
    Dong X, Shi Y, Zhou Z, et al. M2Cd3B16O28 (M = Rb, Cs): two isostructural alkali cadmium borates with a new type of borate layer. Eur J Inorg Chem, 2013, 2013(2): 203–207CrossRefGoogle Scholar
  21. 21.
    Jiang D, Wang Y, Zhang B, et al. K11RbB28O48: a new triple-layered borate with an unprecedented [B28O57] fundamental building block. Dalton Trans, 2018, 47: 10833–10836CrossRefGoogle Scholar
  22. 22.
    Wu H, Yu H, Pan S, et al. New type of complex alkali and alkaline earth metal borates with isolated (B12O24)12− anionic group. Dalton Trans, 2014, 43: 4886CrossRefGoogle Scholar
  23. 23.
    Wei Q, Wang JJ, He C, et al. Deep-ultraviolet nonlinear optics in a borate framework with 21-ring channels. Chem Eur J, 2016, 22: 10759–10762CrossRefGoogle Scholar
  24. 24.
    Zhang X, Wu H, Yu H, et al. Ba4M(CO3)2(BO3)2 (M=Ba, Sr): two borate-carbonates synthesized by open high temperature solution method. Sci China Mater, 2019, 62Google Scholar
  25. 25.
    Xia Z, Poeppelmeier KR. Chemistry-inspired adaptable framework structures. Acc Chem Res, 2017, 50: 1222–1230CrossRefGoogle Scholar
  26. 26.
    Dong X, Jing Q, Shi Y, et al. Pb2Ba3(BO3)3Cl: a material with large SHG enhancement activated by Pb-chelated BO3 groups. J Am Chem Soc, 2015, 137: 9417–9422CrossRefGoogle Scholar
  27. 27.
    Mutailipu M, Zhang M, Wu H, et al. Ba3Mg3(BO3)3F3 polymorphs with reversible phase transition and high performances as ultraviolet nonlinear optical materials. Nat Commun, 2018, 9: 3089–3090CrossRefGoogle Scholar
  28. 28.
    Liu L, Su X, Yang Y, et al. Ba2B10O17: a new centrosymmetric alkaline-earth metal borate with a deep-UV cut-off edge. Dalton Trans, 2014, 43: 8905–8910CrossRefGoogle Scholar
  29. 29.
    Shan F, Kang L, Zhang G, et al. Na3Y3(BO3)4: a new noncentrosymmetric borate with an open-framework structure. Dalton Trans, 2016, 45: 7205–7208CrossRefGoogle Scholar
  30. 30.
    Wu C, Yang G, Humphrey MG, et al. Recent advances in ultraviolet and deep-ultraviolet second-order nonlinear optical crystals. Coord Chem Rev, 2018, 375: 459–488CrossRefGoogle Scholar
  31. 31.
    Luo M, Ye N, Zou G, et al. Na8Lu2(CO3)6F2 and Na3Lu(CO3)2F2: rare earth fluoride carbonates as deep-UV nonlinear optical materials. Chem Mater, 2013, 25: 3147–3153CrossRefGoogle Scholar
  32. 32.
    Tran TT, He J, Rondinelli JM, et al. RbMgCO3F: a new berylliumfree deep-ultraviolet nonlinear optical material. J Am Chem Soc, 2015, 137: 10504–10507CrossRefGoogle Scholar
  33. 33.
    Zhao S, Gong P, Bai L, et al. Beryllium-free Li4Sr(BO3)2 for deepultraviolet nonlinear optical applications. Nat Commun, 2014, 5: 4019–4026CrossRefGoogle Scholar
  34. 34.
    Zou G, Lin C, Kim H, et al. Rb2Na(NO3)3: a congruently melting UV-NLO crystal with a very strong second-harmonic generation response. Crystals, 2016, 6: 42CrossRefGoogle Scholar
  35. 35.
    Zhang W, Halasyamani PS. Crystal growth and optical properties of a UV nonlinear optical material KSrCO3F. CrystEngComm, 2017, 19: 4742–4748CrossRefGoogle Scholar
  36. 36.
    Zou G, Jo H, Lim SJ, et al. Rb3VO(O2)2CO3: a four-in-one carbonatoperoxovanadate exhibiting an extremely strong secondharmonic generation response. Angew Chem Int Ed, 2018, 57: 8619–8622CrossRefGoogle Scholar
  37. 37.
    Dong X, Huang L, Liu Q, et al. Perfect balance harmony in Ba2NO3(OH)3: a beryllium-free nitrate as a UV nonlinear optical material. Chem Commun, 2018, 54: 5792–5795CrossRefGoogle Scholar
  38. 38.
    Zou G, Lin Z, Zeng H, et al. Cs3VO(O2)2CO3: an exceptionally thermostable carbonatoperoxovanadate with an extremely large second-harmonic generation response. Chem Sci, 2018, 9: 8957–8961CrossRefGoogle Scholar
  39. 39.
    Han G, Liu Q, Wang Y, et al. Experimental and theoretical studies on the linear and nonlinear optical properties of lead phosphate crystals LiPbPO4. Phys Chem Chem Phys, 2016, 18: 19123–19129CrossRefGoogle Scholar
  40. 40.
    Liu L, Zhang B, Zhang F, et al. Pb6Ba2(BO3)5X (X = Cl, Br): new borate halides with strong predicted optical anisotropies derived from Pb2+ and (BO3)3−. Dalton Trans, 2015, 44: 7041–7047CrossRefGoogle Scholar
  41. 41.
    Mao FF, Hu CL, Xu X, et al. Bi(IO3)F2: the first metal iodate fluoride with a very strong second harmonic generation effect. Angew Chem, 2017, 129: 2183–2187CrossRefGoogle Scholar
  42. 42.
    Liang ML, Hu CL, Kong F, et al. BiFSeO3: an excellent SHG material designed by aliovalent substitution. J Am Chem Soc, 2016, 138: 9433–9436CrossRefGoogle Scholar
  43. 43.
    Dong X, Huang L, Hu C, et al. CsSbF2SO4: an excellent ultraviolet nonlinear optical sulfate with a KTiOPO4 (KTP)-type structure. Angew Chem, 2019Google Scholar
  44. 44.
    Yamada M, Nada N, Saitoh M, et al. First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation. Appl Phys Lett, 1993, 62: 435–436CrossRefGoogle Scholar
  45. 45.
    Yu H, Wu H, Pan S, et al. Cs3Zn6B9O21: a chemically benign member of the KBBF family exhibiting the largest second harmonic generation response. J Am Chem Soc, 2014, 136: 1264–1267CrossRefGoogle Scholar
  46. 46.
    Jo H, Ok KM. Polar noncentrosymmetric ZnMoSb2O7 and nonpolar centrosymmetric CdMoSb4O10: d10 transition metal size effect influencing the stoichiometry and the centricity. Inorg Chem, 2016, 55: 6286–6293CrossRefGoogle Scholar
  47. 47.
    Mutailipu M, Xie Z, Su X, et al. Chemical cosubstitution-oriented design of rare-earth borates as potential ultraviolet nonlinear optical materials. J Am Chem Soc, 2017, 139: 18397–18405CrossRefGoogle Scholar
  48. 48.
    Xie Z, Mutailipu M, He G, et al. A series of rare-earth borates K7MRE2B15O30 (M = Zn, Cd, Pb; RE = Sc, Y, Gd, Lu) with large second harmonic generation responses. Chem Mater, 2018, 30: 2414–2423CrossRefGoogle Scholar
  49. 49.
    Zhang J, Kang L, Lin TH, et al. The mechanism for the nonlinear optical properties in La9Na3B8O27, La2Na3B3O9 and La2CaB10O19: ab initio studies. J Phys-Condens Matter, 2015, 27: 485501CrossRefGoogle Scholar
  50. 50.
    Aka G, Kahn-Harari A, Mougel F, et al. Linear- and nonlinearoptical properties of a new gadolinium calcium oxoborate crystal, Ca4GdO(BO3)3. J Opt Soc Am B, 1997, 14: 2238–2247CrossRefGoogle Scholar
  51. 51.
    He R, Lin ZS, Lee MH, et al. Ab initio studies on the mechanism for linear and nonlinear optical effects in YAl3(BO3)4. J Appl Phys, 2011, 109: 103510CrossRefGoogle Scholar
  52. 52.
    Iwai M, Kobayashi T, Furuya H, et al. Crystal growth and optical characterization of rare-earth (Re) calcium oxyborate ReCa4O(BO3)3 (Re = Y or Gd) as new nonlinear optical material. Jpn J Appl Phys, 1997, 36: L276–L279CrossRefGoogle Scholar
  53. 53.
    SAINT, Version 7.60A. Bruker Analytical X-ray Instruments, Inc.: Madison, WI, 2008Google Scholar
  54. 54.
    Sheldrick GM. Crystal structure refinement with SHELXL. Acta Crystlogr C Struct Chem, 2015, 71: 3–8CrossRefGoogle Scholar
  55. 55.
    Dolomanov OV, Bourhis LJ, Gildea RJ, et al. OLEX2: a complete structure solution, refinement and analysis program. J Appl Crystlogr, 2009, 42: 339–341CrossRefGoogle Scholar
  56. 56.
    Li J, Wang K, Song S, et al. [LiNa(N5)2(H2O)4]·H2O: a novel heterometallic cyclo-N5 framework with helical chains. Sci China Mater, 2018, 62: 283–288CrossRefGoogle Scholar
  57. 57.
    Spek AL. Single-crystal structure validation with the program PLATON. J Appl Crystlogr, 2003, 36: 7–13CrossRefGoogle Scholar
  58. 58.
    Kurtz SK, Perry TT. A powder technique for the evaluation of nonlinear optical materials. J Appl Phys, 1968, 39: 3798–3813CrossRefGoogle Scholar
  59. 59.
    Segall MD, Lindan PJD, Probert MJ, et al. First-principles simulation: ideas, illustrations and the castep code. J Phys-Condens Matter, 2002, 14: 2717–2744CrossRefGoogle Scholar
  60. 60.
    Li X, Hui Q, Shao D, et al. First-principles study on the stability and electronic structure of Mg/ZrB2 interfaces. Sci China Mater, 2016, 59: 28–37CrossRefGoogle Scholar
  61. 61.
    Chen ZQ, Hu M, Li CM, et al. Electronic structures, elastic and optical properties of M2O5 (M = V, Nb, Ta). Sci China Mater, 2016, 59: 265–278CrossRefGoogle Scholar
  62. 62.
    Fonseca Guerra C, Snijders JG, te Velde G, et al. Towards an order-N DFT method. Theor Chem Accounts-Theor Computation Modeling (Theoretica Chim Acta), 1998, 99: 391–403Google Scholar
  63. 63.
    Wu B, Yin J, Ding Y, et al. A new two-dimensional TeSe2 semiconductor: indirect to direct band-gap transitions. Sci China Mater, 2017, 60: 747–754CrossRefGoogle Scholar
  64. 64.
    Meng R, Jiang J, Liang Q, et al. Design of graphene-like gallium nitride and WS2/WSe2 nanocomposites for photocatalyst applications. Sci China Mater, 2016, 59: 1027–1036CrossRefGoogle Scholar
  65. 65.
    Zhang B, Lee MH, Yang Z, et al. Simulated pressure-induced blueshift of phase-matching region and nonlinear optical mechanism for K3B6O10X (X = Cl, Br). Appl Phys Lett, 2015, 106: 031906CrossRefGoogle Scholar
  66. 66.
    Lin J, Lee MH, Liu ZP, et al. Mechanism for linear and nonlinear optical effects in β-BaB2O4 crystals. Phys Rev B, 1999, 60: 13380–13389CrossRefGoogle Scholar
  67. 67.
    Brown ID, Altermatt D. Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystlogr B Struct Sci, 1985, 41: 244–247CrossRefGoogle Scholar
  68. 68.
    Zhao S, Zhang G, Yao J, et al. K6Li3Sc2B15O30: a new nonlinear optical crystal with a short absorption edge. CrystEngComm, 2012, 14: 5209–5214CrossRefGoogle Scholar
  69. 69.
    Tran TT, Koocher NZ, Rondinelli JM, et al. Beryllium-free β-Rb2Al2B2O7 as a possible deep-ultraviolet nonlinear optical material replacement for KBe2BO3F2. Angew Chem Int Ed, 2017, 56: 2969–2973CrossRefGoogle Scholar
  70. 70.
    Yang Y, Pan S, Hou X, et al. A congruently melting and deep UV nonlinear optical material: Li3Cs2B5O10. J Mater Chem, 2011, 21: 2890CrossRefGoogle Scholar
  71. 71.
    Chen C, Wu Y, Li R. The anionic group theory of the non-linear optical effect and its applications in the development of new highquality NLO crystals in the borate series. Int Rev Phys Chem, 1989, 8: 65–91CrossRefGoogle Scholar
  72. 72.
    Maggard PA, Nault TS, Stern CL, et al. Alignment of acentric MoO3F3 3− anions in a polar material: (Ag3MoO3F3)(Ag3MoO4)Cl. J Solid State Chem, 2003, 175: 27–33CrossRefGoogle Scholar
  73. 73.
    Halasyamani PS. Asymmetric cation coordination in oxide materials: influence of lone-pair cations on the intra-octahedral distortion in d0 transition metals. Chem Mater, 2004, 16: 3586–3592CrossRefGoogle Scholar
  74. 74.
    Rashkeev SN, Lambrecht WRL, Segall B. Efficient ab-initio method for the calculation of frequency dependent non-linear optical response in semiconductors: application to second harmonic generation. Physics, 1997, 46: 3848–3859Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Zhiqing Xie (解植擎)
    • 1
  • Ying Wang (王颖)
    • 1
  • Shichao Cheng (程世超)
    • 1
  • Guopeng Han (韩国鹏)
    • 1
    • 2
  • Zhihua Yang (杨志华)
    • 1
  • Shilie Pan (潘世烈)
    • 1
    Email author
  1. 1.CAS Key Laboratory of Functional Materials and Devices for Special EnvironmentsXinjiang Technical Institute of Physics & Chemistry, CAS; Xinjiang Key Laboratory of Electronic Information Materials and DevicesUrumqiChina
  2. 2.Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations