Porous NiCoP nanowalls as promising electrode with high-area and mass capacitance for supercapacitors

  • Xiaomeng Zhang (张晓萌)
  • Danni Su (苏丹妮)
  • Aiping Wu (吴爱平)
  • Haijing Yan (闫海静)
  • Xiuwen Wang (王秀文)
  • Dongxu Wang (王东旭)
  • Lei Wang (王蕾)
  • Chungui Tian (田春贵)Email author
  • Li Sun (孙立)
  • Honggang Fu (付宏刚)Email author


The design of the electrode with high-area and mass capacitance is important for the practical application of supercapacitors. Here, we fabricated the porous NiCoP nanowalls supported by Ni foam (NiCo-P/NF) for supercapacitors with win-win high-area and mass capacitance. The NiCoOH nanowall precursor was prepared by controlling the deposition rate of Ni2+ and Co2+ on NF through a sodium acetate-assisted (floride-free) process. After the phosphorization, the NiCo-P nanowalls formed with high loading about 8.6 mg cm-2 on NF. The electrode combined several advantages favorable for energy storage: the plentiful pores beneficial for ion transport, the nanowalls for easy accommodation of electrolyte, good conductivity of NiCo-P for easy transport of electrons. As expected, the NiCo-P/NF exhibited a high specific mass capacitance (1,861 F g-1 at 1 A g-1, 1,070 F g-1 at 10 A g-1), and high area capacitance (17.31 F cm-2 at 5 mA cm-2 and 10 F cm-2 at 100 mA cm-2). The asymmetric supercapacitor (ASC) composed of NiCo-P/NF positive electrode coupled with commercial active carbon negative electrode exhibited a high energy density of 44.9 W h kg-1 at a power density of 750 W kg-1. The ASC can easily drive fans, electronic watch and LED lamps, implying their potential for the practical application.


porous nanowalls bimetallic phosphide supercapacitor floride-free synthesis capacitance 



设计同时具有大面积和高质量电容的电极对于超级电容器 的实际应用非常重要. 本文, 我们将多孔NiCoP纳米围墙置于Ni泡 沫(NF)上得到(NiCo-P/NF)电极, 以该电极制备的超级电容器具有 高的面积电容和和质量电容. 首先通过NaAc辅助(不含氟)工艺控 制Ni2+和Co2+在NF上的沉积速率制备NiCoOH纳米围墙母体. 可控 磷化后, 在NF上形成具有约8.6 mg cm−2的高负载量的NiCo-P纳米 围墙. 该电极具有以下特点: 有利于离子传输的丰富孔隙; 易于容纳 电解质的纳米围墙; NiCo-P易于传输电子的良好导电性. NiCo-P/NF表现出高比质量电容(在1 A g−1时为1861 F g−1, 在10 A g−1时为 1070 F g−1), 并且具有大的面积电容(在5 mA cm−2 时为 17.31 F cm−2, 在100 mA cm−2时为10 F cm−2). 由NiCo-P/NF正极与 商业活性炭负极组成的非对称超级电容器(ASC)在功率密度为 750 W kg−1时表现出44.9 W h kg−1的高能量密度. ASC可以轻松驱 动风扇、电子表和LED灯, 表明其具有实际应用的潜力.



We gratefully acknowledge the support from the National Natural Science Foundation of China (21571054, 21631004, 21805073 and 21771059), the Natural Science Foundation of Heilongjiang Province (QC2018013), and the basic research fund of Heilongjiang University in Heilongjiang Province (RCYJTD201801).


  1. 1.
    Wang J, Cui W, Liu Q, et al. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv Mater, 2016, 28: 215–230CrossRefGoogle Scholar
  2. 2.
    Popczun EJ, McKone JR, Read CG, et al. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J Am Chem Soc, 2013, 135: 9267–9270CrossRefGoogle Scholar
  3. 3.
    Yu J, Li Q, Li Y, et al. Ternary metal phosphide with triple-layered structure as a low-cost and efficient electrocatalyst for bifunctional water splitting. Adv Funct Mater, 2016, 26: 7644–7651CrossRefGoogle Scholar
  4. 4.
    Cai Z, Wu A, Yan H, et al. Hierarchical whisker-on-sheet NiCoP with adjustable surface structure for efficient hydrogen evolution reaction. Nanoscale, 2018, 10: 7619–7629CrossRefGoogle Scholar
  5. 5.
    Wang A, Qin M, Guan J, et al. The synthesis of metal phosphides: reduction of oxide precursors in a hydrogen plasma. Angew Chem Int Ed, 2008, 47: 6052–6054CrossRefGoogle Scholar
  6. 6.
    Infantes-Molina A, Moreno-León C, Pawelec B, et al. Simultaneous hydrodesulfurization and hydrodenitrogenation on MoP/SiO2 catalysts: Effect of catalyst preparation method. Appl Catal B-Environ, 2012, 113-114: 87–99CrossRefGoogle Scholar
  7. 7.
    Liu P, Chang WT, Wang J, et al. MoP/Hβ catalyst prepared by low-temperature auto-combustion for hydroisomerization of n-heptane. Catal Commun, 2015, 66: 79–82CrossRefGoogle Scholar
  8. 8.
    Jia H, Li Q, Li C, et al. A novel three-dimensional hierarchical NiCo2O4/Ni2P electrode for high energy asymmetric supercapacitor. Chem Eng J, 2018, 354: 254–260CrossRefGoogle Scholar
  9. 9.
    Zhang Y, Wang W, Jiang X, et al. Hydroisomerization of n-hexadecane over a Pd-Ni2P/SAPO-31 bifunctional catalyst: Synergistic effects of bimetallic active sites. Catal Sci Technol, 2018, 8: 817–828CrossRefGoogle Scholar
  10. 10.
    Liu K, Zhang C, Sun Y, et al. High-performance transition metal phosphide alloy catalyst for oxygen evolution reaction. ACS Nano, 2018, 12: 158–167CrossRefGoogle Scholar
  11. 11.
    Xiao J, Zhang Z, Zhang Y, et al. Large-scale printing synthesis of transition metal phosphides encapsulated in N, P co-doped carbon as highly efficient hydrogen evolution cathodes. Nano Energy, 2018, 51: 223–230CrossRefGoogle Scholar
  12. 12.
    Dang T, Wang L, Wei D, et al. Bifunctional phosphorization synthesis of mesoporous networked Ni-Co-P/phosphorus doped carbon for ultra-stable asymmetric supercapacitors. Electrochim Acta, 2019, 299: 346–356CrossRefGoogle Scholar
  13. 13.
    Zhang X, Wu A, Wang X, et al. Porous NiCoP nanosheets as efficient and stable positive electrodes for advanced asymmetric supercapacitors. J Mater Chem A, 2018, 6: 17905–17914CrossRefGoogle Scholar
  14. 14.
    Li X, Wu H, Elshahawy AM, et al. Cactus-like NiCoP/NiCo-OH 3D architecture with tunable composition for high-performance electrochemical capacitors. Adv Funct Mater, 2018, 28: 1800036CrossRefGoogle Scholar
  15. 15.
    Zhang T, Yang L, Yan X, et al. Recent advances of cellulose-based materials and their promising application in sodium-ion batteries and capacitors. Small, 2018, 14: 1802444CrossRefGoogle Scholar
  16. 16.
    Li S, Chen J, Gong X, et al. A nonpresodiate sodium-ion capacitor with high performance. Small, 2018, 14: 1804035CrossRefGoogle Scholar
  17. 17.
    Fan X, Yu C, Yang J, et al. A layered-nanospace-confinement strategy for the synthesis of two-dimensional porous carbon nanosheets for high-rate performance supercapacitors. Adv Energy Mater, 2015, 5: 1401761–1401767CrossRefGoogle Scholar
  18. 18.
    Chen W, Yu H, Lee SY, et al. Nanocellulose: A promising nanomaterial for advanced electrochemical energy storage. Chem Soc Rev, 2018, 47: 2837–2872CrossRefGoogle Scholar
  19. 19.
    Wu A, Tian C, Yan H, et al. Hierarchical MoS2@MoP core-shell heterojunction electrocatalysts for efficient hydrogen evolution reaction over a broad pH range. Nanoscale, 2016, 8: 11052–11059CrossRefGoogle Scholar
  20. 20.
    Song J, Xiang J, Mu C, et al. Facile synthesis and excellent electrochemical performance of CoP nanowire on carbon cloth as bifunctional electrode for hydrogen evolution reaction and supercapacitor. Sci China Mater, 2017, 60: 1179–1186CrossRefGoogle Scholar
  21. 21.
    Lukatskaya MR, Dunn B, Gogotsi Y. Multidimensional materials and device architectures for future hybrid energy storage. Nat Commun, 2016, 7: 12647–12659CrossRefGoogle Scholar
  22. 22.
    Lou G, Wu Y, Zhu X, et al. Facile activation of commercial carbon felt as a low-cost free-standing electrode for flexible supercapacitors. ACS Appl Mater Interfaces, 2018, 10: 42503–42512CrossRefGoogle Scholar
  23. 23.
    Zhao H, Yuan ZY. Transition metal-phosphorus-based materials for electrocatalytic energy conversion reactions. Catal Sci Technol, 2017, 7: 330–347CrossRefGoogle Scholar
  24. 24.
    Zhang Z, Liu S, Xiao J, et al. Fiber-based multifunctional nickel phosphide electrodes for flexible energy conversion and storage. J Mater Chem A, 2016, 4: 9691–9699CrossRefGoogle Scholar
  25. 25.
    Wang Y, Song Y, Xia Y. Electrochemical capacitors: Mechanism, materials, systems, characterization and applications. Chem Soc Rev, 2016, 45: 5925–5950CrossRefGoogle Scholar
  26. 26.
    Shao Y, Zhao Y, Li H, et al. Three-dimensional hierarchical NixCo1-xO/NiyCo2-yP@C hybrids on nickel foam for excellent supercapacitors. ACS Appl Mater Interfaces, 2016, 8: 35368–35376CrossRefGoogle Scholar
  27. 27.
    Wang D, Kong LB, Liu MC, et al. Amorphous Ni-P materials for high performance pseudocapacitors. J Power Sources, 2015, 274: 1107–1113CrossRefGoogle Scholar
  28. 28.
    Hu YM, Liu MC, Hu YX, et al. One-pot hydrothermal synthesis of porous nickel cobalt phosphides with high conductivity for advanced energy conversion and storage. Electrochim Acta, 2016, 215: 114–125CrossRefGoogle Scholar
  29. 29.
    Kong M, Wang Z, Wang W, et al. NiCoP nanoarray: A superior pseudocapacitor electrode with high areal capacitance. Chem Eur J, 2017, 23: 4435–4441CrossRefGoogle Scholar
  30. 30.
    Shao Y, El-Kady MF, Sun J, et al. Design and mechanisms of asymmetric supercapacitors. Chem Rev, 2018, 118: 9233–9280CrossRefGoogle Scholar
  31. 31.
    Lu Y, Liu J, Liu X, et al. Facile synthesis of Ni-coated Ni2P for supercapacitor applications. CrystEngComm, 2013, 15: 7071–7079CrossRefGoogle Scholar
  32. 32.
    Jin Y, Zhao C, Jiang Q, et al. Hierarchically mesoporous micro/nanostructured CoP nanowire electrodes for enhanced performance supercapacitors. Colloids Surfs A-Physicochem Eng Aspects, 2018, 553: 58–65CrossRefGoogle Scholar
  33. 33.
    Zhang GQ, Wu HB, Hoster HE, et al. Single-crystalline NiCo2O4 nanoneedle arrays grown on conductive substrates as binder-free electrodes for high-performance supercapacitors. Energy Environ Sci, 2012, 5: 9453–9456CrossRefGoogle Scholar
  34. 34.
    Garg N, Basu M, Ganguli AK. Nickel cobaltite nanostructures with enhanced supercapacitance activity. J Phys Chem C, 2014, 118: 17332–17341CrossRefGoogle Scholar
  35. 35.
    Wu S, Zhu Y. Highly densified carbon electrode materials towards practical supercapacitor devices. Sci China Mater, 2017, 60: 25–38CrossRefGoogle Scholar
  36. 36.
    Zhang X, Jiao Y, Sun L, et al. GO-induced assembly of gelatin toward stacked layer-like porous carbon for advanced supercapacitors. Nanoscale, 2016, 8: 2418–2427CrossRefGoogle Scholar
  37. 37.
    Wang T, Zhang S, Wang H. Binary NiCu layered double hydroxide nanosheets for enhanced energy storage performance as supercapacitor electrode. Sci China Mater, 2018, 61: 296–302CrossRefGoogle Scholar
  38. 38.
    Sun L, Fu Y, Tian C, et al. Isolated boron and nitrogen sites on porous graphitic carbon synthesized from nitrogen-containing chitosan for supercapacitors. ChemSusChem, 2014, 7: 1637–1646CrossRefGoogle Scholar
  39. 39.
    Liu Q, Hong X, Zhang X, et al. Hierarchically structured Co9S8@NiCo2O4 nanobrushes for high-performance flexible asymmetric supercapacitors. Chem Eng J, 2019, 356: 985–993CrossRefGoogle Scholar
  40. 40.
    Sun M, Liu H, Qu J, et al. Earth-rich transition metal phosphide for energy conversion and storage. Adv Energy Mater, 2016, 6: 1600087CrossRefGoogle Scholar
  41. 41.
    Cao X, Jia D, Li D, et al. One-step co-electrodeposition of hierarchical radial NixP nanospheres on Ni foam as highly active flexible electrodes for hydrogen evolution reaction and supercapacitor. Chem Eng J, 2018, 348: 310–318CrossRefGoogle Scholar
  42. 42.
    Zhou K, Zhou W, Yang L, et al. Ultrahigh-performance pseudocapacitor electrodes based on transition metal phosphide nanosheets array via phosphorization: A general and effective approach. Adv Funct Mater, 2015, 25: 7530–7538CrossRefGoogle Scholar
  43. 43.
    Lan Y, Zhao H, Zong Y, et al. Phosphorization boosts the capacitance of mixed metal nanosheet arrays for high performance supercapacitor electrodes. Nanoscale, 2018, 10: 11775–11781CrossRefGoogle Scholar
  44. 44.
    Zheng Z, Retana M, Hu X, et al. Three-dimensional cobalt phosphide nanowire arrays as negative electrode material for flexible solid-state asymmetric supercapacitors. ACS Appl Mater Interfaces, 2017, 9: 16986–16994CrossRefGoogle Scholar
  45. 45.
    Jabeen N, Hussain A, Xia Q, et al. High-performance 2.6 V aqueous asymmetric supercapacitors based on in situ formed Na0.5MnO2 nanosheet assembled nanowall arrays. Adv Mater, 2017, 29: 1700804CrossRefGoogle Scholar
  46. 46.
    Ding YL, Kopold P, Hahn K, et al. A lamellar hybrid assembled from metal disulfide nanowall arrays anchored on a carbon layer: In situ hybridization and improved sodium storage. Adv Mater, 2016, 28: 7774–7782CrossRefGoogle Scholar
  47. 47.
    Liu D, Garcia BB, Zhang Q, et al. Mesoporous hydrous manganese dioxide nanowall arrays with large lithium ion energy storage capacities. Adv Funct Mater, 2009, 19: 1015–1023CrossRefGoogle Scholar
  48. 48.
    Post GB, Cohn PD, Cooper KR. Perfluorooctanoic acid (PFOA), an emerging drinking water contaminant: A critical review of recent literature. Environ Res, 2016, 116: 93–117CrossRefGoogle Scholar
  49. 49.
    Parize R, Garnier J, Chaix-Pluchery O, et al. Effects of hexamethylenetetramine on the nucleation and radial growth of ZnO nanowires by chemical bath deposition. J Phys Chem C, 2016, 120: 5242–5250CrossRefGoogle Scholar
  50. 50.
    Liu S, Hui KS, Hui KN. Flower-like copper cobaltite nanosheets on graphite paper as high-performance supercapacitor electrodes and enzymeless glucose sensors. ACS Appl Mater Interfaces, 2016, 8: 3258–3267CrossRefGoogle Scholar
  51. 51.
    Liang H, Xia C, Jiang Q, et al. Low temperature synthesis of ternary metal phosphides using plasma for asymmetric supercapacitors. Nano Energy, 2017, 35: 331–340CrossRefGoogle Scholar
  52. 52.
    Ko Y, Kwon M, Bae WK, et al. Flexible supercapacitor electrodes based on real metal-like cellulose papers. Nat Commun, 2017, 8: 536–546CrossRefGoogle Scholar
  53. 53.
    Pan Z, Liu M, Yang J, et al. High electroactive material loading on a carbon nanotube@3D graphene aerogel for high-performance flexible all-solid-state asymmetric supercapacitors. Adv Funct Mater, 2017, 27: 1701122CrossRefGoogle Scholar
  54. 54.
    Yan H, Xie Y, Jiao Y, et al. Holey reduced graphene oxide coupled with an Mo2N-Mo2C heterojunction for efficient hydrogen evolution. Adv Mater, 2018, 30: 1704156CrossRefGoogle Scholar
  55. 55.
    Surendran S, Shanmugapriya S, Sivanantham A, et al. Electrospun carbon nanofibers encapsulated with NiCoP: A multifunctional electrode for supercapattery and oxygen reduction, oxygen evolution, and hydrogen evolution reactions. Adv Energy Mater, 2018, 8: 1800555CrossRefGoogle Scholar
  56. 56.
    Li M, Ma KY, Cheng JP, et al. Nickel-cobalt hydroxide nanoflakes conformal coating on carbon nanotubes as a supercapacitive material with high-rate capability. J Power Sources, 2016, 286: 438–444CrossRefGoogle Scholar
  57. 57.
    Yi H, Wang H, Jing Y, et al. Advanced asymmetric supercapacitors based on CNT@Ni(OH)2 core-shell composites and 3D graphene networks. J Mater Chem A, 2015, 3: 19545–19555CrossRefGoogle Scholar
  58. 58.
    Kirubasankar B, Palanisamy P, Arunachalam S, et al. 2D MoSe2-Ni(OH)2 nanohybrid as an efficient electrode material with high rate capability for asymmetric supercapacitor applications. Chem Eng J, 2019, 355: 881–890CrossRefGoogle Scholar
  59. 59.
    Li M, Yang W, Huang Y, et al. Hierarchical mesoporous Co3O4@ZnCo2O4 hybrid nanowire arrays supported on Ni foam for highperformance asymmetric supercapacitors. Sci China Mater, 2018, 61: 1167–1176CrossRefGoogle Scholar
  60. 60.
    Gao Q, Wang X, Shi Z, et al. Synthesis of porous NiCo2S4 aerogel for supercapacitor electrode and oxygen evolution reaction electrocatalyst. Chem Eng J, 2018, 331: 185–193CrossRefGoogle Scholar
  61. 61.
    Li Y, Cao L, Qiao L, et al. Ni-Co sulfide nanowires on nickel foam with ultrahigh capacitance for asymmetric supercapacitors. J Mater Chem A, 2018, 2: 6540–6548CrossRefGoogle Scholar
  62. 62.
    Chen X, Cheng M, Chen D, et al. Shape-controlled synthesis of Co2P nanostructures and their application in supercapacitors. ACS Appl Mater Interfaces, 2016, 8: 3892–3900CrossRefGoogle Scholar
  63. 63.
    Tang C, Tang Z, Gong H. Hierarchically porous Ni-Co oxide for high reversibility asymmetric full-cell supercapacitors. J Electrochem Soc, 2012, 159: A651–A656CrossRefGoogle Scholar
  64. 64.
    Hu Y, Liu M, Yang Q, et al. Facile synthesis of high electrical conductive CoP via solid-state synthetic routes for supercapacitors. J Energy Chem, 2017, 26: 49–55CrossRefGoogle Scholar
  65. 65.
    Kong W, Lu C, Zhang W, et al. Homogeneous core-shell NiCo2S4 nanostructures supported on nickel foam for supercapacitors. J Mater Chem A, 2015, 3: 12452–12460CrossRefGoogle Scholar
  66. 66.
    Li Z, Ji X, Han J, et al. NiCo2S4 nanoparticles anchored on reduced graphene oxide sheets: In-situ synthesis and enhanced capacitive performance. J Colloid Interface Sci, 2016, 477: 46–53CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xiaomeng Zhang (张晓萌)
    • 1
  • Danni Su (苏丹妮)
    • 1
  • Aiping Wu (吴爱平)
    • 1
  • Haijing Yan (闫海静)
    • 1
  • Xiuwen Wang (王秀文)
    • 1
  • Dongxu Wang (王东旭)
    • 1
  • Lei Wang (王蕾)
    • 1
  • Chungui Tian (田春贵)
    • 1
    Email author
  • Li Sun (孙立)
    • 1
  • Honggang Fu (付宏刚)
    • 1
    Email author
  1. 1.Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of ChinaHeilongjiang UniversityHarbinChina

Personalised recommendations