Advertisement

Gold immunochromatographic assay for simultaneous detection of sibutramine and sildenafil in slimming tea and coffee

  • Steven Suryoprabowo
  • Liqiang Liu (刘丽强)
  • Hua Kuang (匡华)
  • Gang Cui (崔钢)
  • Chuanlai Xu (胥传来)Email author
Letters
  • 33 Downloads

胶体金免疫层析分析方法用于同时检出减肥茶和咖啡中西布曲明和西地那非

摘要

本文建立了一种方便、快速、高特异性的胶体金免疫层析检测方法, 用于同时检测减肥茶和咖啡中的西布曲明(SB)和西地那非(SID). 我们首先制备了胶体金纳米粒子(CG), 然后使之与单抗结合形成CG-mAb, 将CG-mAb与抗原分别喷涂到基板上形成结合垫和检测条带, 其中所需的抗原和抗体均由本实验室制备. 经过条件优化, 该方法在PBS缓冲溶液(0.01 mol L−1, pH 7.4), 以及三种减肥茶和三种咖啡样本中, 对SB和SID的消线值均为500 ng mL−1; 检测时间仅需5 min. 该方法对减肥茶和咖啡样本中SB和SID的快速检出具有实际应用价值.

Notes

Acknowledgements

This work was financially supported by the National Key R&D Program of China (2016YFD0401101 and KYCX18_1566).

Author contributions

Xu C and Kuang H designed the experiments. Suryoprabowo S and Liu L performed the experiments. Cui G and Kuang H participated in data analysis. Xu C drafted the manuscript, and all authors read and approved the manuscript prior to submission.

References

  1. 1.
    Yuan R. Traditional Chinese medicine an approach to scientific proof and clinical validation. Pharmacol Therap, 2000, 86: 191–198CrossRefGoogle Scholar
  2. 2.
    Yun J, Shin KJ, Choi J, et al. Isolation and structural characterization of a novel sibutramine analogue, chlorosipentramine, in a slimming dietary supplement, by using HPLC-PDA, LC-Q-TOF/MS, FT-IR, and NMR. Forensic Sci Int, 2018, 286: 199–207CrossRefGoogle Scholar
  3. 3.
    Phattanawasin P, Sotanaphun U, Sukwattanasinit T, et al. Quantitative determination of sibutramine in adulterated herbal slimming formulations by TLC-image analysis method. Forensic Sci Int, 2012, 219: 96–100CrossRefGoogle Scholar
  4. 4.
    de Carvalho LM, Martini M, Moreira APL, et al. Presence of synthetic pharmaceuticals as adulterants in slimming phytotherapeutic formulations and their analytical determination. Forensic Sci Int, 2011, 204: 6–12CrossRefGoogle Scholar
  5. 5.
    Müller D, Weinmann W, Hermanns-Clausen M. Chinese slimming capsules containing sibutramine sold over the internet: A case series. Deutsches Äerzteblatt International, 2009, 106: 218–222Google Scholar
  6. 6.
    Wang S, Yu J, Wan F, et al. Determination of sibutramine with a new sensor based on luminol electrochemiluminescence. J Lumin, 2011, 131: 1515–1519CrossRefGoogle Scholar
  7. 7.
    Terrett NK, Bell AS, Brown D, et al. Sildenafil (VIAGRATM), a potent and selective inhibitor of type 5 cGMP phosphodiesterase with utility for the treatment of male erectile dysfunction. Bioorg Med Chem Lett, 1996, 6: 1819–1824CrossRefGoogle Scholar
  8. 8.
    Ortiz RS, Mariotti KC, Schwab NV, et al. Fingerprinting of sildenafil citrate and tadalafil tablets in pharmaceutical formulations via X-ray fluorescence (XRF) spectrometry. J Pharm Biomed Anal, 2012, 58: 7–11CrossRefGoogle Scholar
  9. 9.
    Wollein U, Schech B, Hardt J, et al. Determination and quantitation of sildenafil and its major metabolite in the breast milk of a lactating woman. J Pharm Biomed Anal, 2016, 120: 100–105CrossRefGoogle Scholar
  10. 10.
    Man CN, Nor NM, Lajis R, et al. Identification of sildenafil, tadalafil and vardenafil by gas chromatography-mass spectrometry on short capillary column. J Chromatog A, 2011, 1218: 4788CrossRefGoogle Scholar
  11. 11.
    Li Y, Hu J, Shi Y, et al. Simultaneous determination of seven adulterants in slimming functional foods by HPLC-ESI-MS/MS. Food Anal Methods, 2011, 4: 505–516CrossRefGoogle Scholar
  12. 12.
    Strano-Rossi S, Colamonici C, Botrè F. Detection of sibutramine administration: A gas chromatography/mass spectrometry study of the main urinary metabolites. Rapid Commun Mass Spectrom, 2007, 21: 79–88CrossRefGoogle Scholar
  13. 13.
    Yamamoto S, Sumioka S, Fujioka M, et al. A study on detection of drugs in slimming health foods using GC-MS/MS. J Food Hyg Soc Jpn, 2011, 52: 363–369CrossRefGoogle Scholar
  14. 14.
    Strano-Rossi S, Anzillotti L, de la Torre X, et al. A gas chromatography/mass spectrometry method for the determination of sildenafil, vardenafil and tadalafil and their metabolites in human urine. Rapid Commun Mass Spectrom, 2010, 24: 1697–1706CrossRefGoogle Scholar
  15. 15.
    Jeong Y, Suh SI, Kim JY, et al. Simultaneous determination of sildenafil, tadalafil, and vardenafil in pharmaceutical preparations by high-temperature gas chromatography/mass spectrometry. Chromatographia, 2016, 79: 1671–1678CrossRefGoogle Scholar
  16. 16.
    Wang K, Zeng H, Zhang Y, et al. A hierarchical screening method for detection of illegal adulterants in Fur seal ginseng pills by profiling analysis of HPLC multi-dimensional fingerprints. J Sep Sci, 2019, 42: 1509–1519CrossRefGoogle Scholar
  17. 17.
    Mathon C, Ankli A, Reich E, et al. Screening and determination of sibutramine in adulterated herbal slimming supplements by HPTLC-UV densitometry. Food Add Contams-Part A, 2014, 31: 15–20CrossRefGoogle Scholar
  18. 18.
    Hemdan A, Tawakol SM. HPLC-UV chromatographic methods for detection and quantification of undeclared withdrawn synthetic medications in counterfeit herbal medicines with confirmation by HPLC-PDA and mass spectrometry. Chromatographia, 2018, 81: 777–783CrossRefGoogle Scholar
  19. 19.
    Zeng Y, Xu Y, Kee CL, et al. Analysis of 40 weight loss compounds adulterated in health supplements by liquid chromatography quadrupole linear ion trap mass spectrometry. Drug Test Anal, 2016, 8: 351–356CrossRefGoogle Scholar
  20. 20.
    Zhong Y, Sun C, Xiong J, et al. Simultaneous determination of eight adulterants in weight management supplements and herbs by HPLC-DAD and LC-MS/MS. J Liquid Chromatog Related Technol, 2017, 40: 640–648CrossRefGoogle Scholar
  21. 21.
    Rashid J, Ahsan F. A highly sensitive LC-MS/MS method for concurrent determination of sildenafil and rosiglitazone in rat plasma. J Pharm Biomed Anal, 2016, 129: 21–27CrossRefGoogle Scholar
  22. 22.
    Hasnain MS, Ansari SA, Rao S, et al. QbD-driven development and validation of liquid chromatography tandem mass spectrometric method for the quantitation of sildenafil in human plasma. J Chromatog Sci, 2017, 55: 587–594CrossRefGoogle Scholar
  23. 23.
    Ge W, Suryoprabowo S, Xu L, et al. Rapid detection of penbutolol in pig urine using an immunochromatographic test strip. Food Agric Immunol, 2018, 29: 1126–1136CrossRefGoogle Scholar
  24. 24.
    Hao K, Suryoprabowo S, Song S, et al. Rapid detection of zear-alenone and its metabolite in corn flour with the immunochromatographic test strip. Food Agric Immunol, 2018, 29: 498–510CrossRefGoogle Scholar
  25. 25.
    Liu L, Xu L, Suryoprabowo S, et al. Development of an immunochromatographic test strip for the detection of ochratoxin A in red wine. Food Agric Immunol, 2018, 29: 434–444CrossRefGoogle Scholar
  26. 26.
    Song S, Suryoprabowo S, Liu L, et al. Development of monoclonal antibody-based colloidal gold immunochromatographic assay for analysis of halofuginone in milk. Food Agric Immunol, 2019, 30: 112–122CrossRefGoogle Scholar
  27. 27.
    Song Y, Wang YY, Zhang Y, et al. Development of enzyme-linked immunosorbent assay for rapid determination of sildenafil in adulterated functional foods. Food Agric Immunol, 2012, 23: 338–351CrossRefGoogle Scholar
  28. 28.
    Shen X, Liu L, Xu L, et al. Rapid detection of praziquantel using monoclonal antibody-based ic-ELISA and immunochromatographic strips. Food Agric Immunol, 2019, 30: 913–923CrossRefGoogle Scholar
  29. 29.
    Kong D, Liu L, Song S, et al. A gold nanoparticle-based semi-quantitative and quantitative ultrasensitive paper sensor for the detection of twenty mycotoxins. Nanoscale, 2016, 8: 5245–5253CrossRefGoogle Scholar
  30. 30.
    Isanga J, Mukunzi D, Chen Y, et al. Development of a monoclonal antibody assay and a lateral flow strip test for the detection of paromomycin residues in food matrices. Food Agric Immunol, 2017, 28: 355–373CrossRefGoogle Scholar
  31. 31.
    Gong X, Liu Y, Xiang H, et al. Membraneless reproducible MoS2 field-effect transistor biosensor for high sensitive and selective detection of FGF21. Sci China Mater, 2019, 62: 1479–1487CrossRefGoogle Scholar
  32. 32.
    Jiang W, Zeng L, Liu L, et al. Immunochromatographic strip for rapid detection of phenylethanolamine A. Food Agric Immunol, 2018, 29: 182–192CrossRefGoogle Scholar
  33. 33.
    Xu Y, Wang H, Chen B, et al. Emerging barcode particles for multiplex bioassays. Sci China Mater, 2019, 62: 289–324CrossRefGoogle Scholar
  34. 34.
    Huang P, Tu D, Zheng W, et al. Inorganic lanthanide nanoprobes for background-free luminescent bioassays. Sci China Mater, 2015, 58: 156–177CrossRefGoogle Scholar
  35. 35.
    Wang W, Liu L, Song S, et al. Gold nanoparticle-based strip sensor for multiple detection of twelve Salmonella strains with a genus-specific lipopolysaccharide antibody. Sci China Mater, 2016, 59: 665–674CrossRefGoogle Scholar
  36. 36.
    Guo L, Xu L, Song S, et al. Development of an immunochromatographic strip for the rapid detection of maduramicin in chicken and egg samples. Food Agric Immunol, 2018, 29: 458–469CrossRefGoogle Scholar
  37. 37.
    Guo J, Liu W, Lan X, et al. Development and evaluation of an immunochromatographic strip for rapid screening of sildenafil-type compounds as illegal additives in functional foods. Food Additives Contams-Part A, 2016, 33: 1095–1104CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Steven Suryoprabowo
    • 1
    • 2
  • Liqiang Liu (刘丽强)
    • 1
    • 2
  • Hua Kuang (匡华)
    • 1
    • 2
  • Gang Cui (崔钢)
    • 3
  • Chuanlai Xu (胥传来)
    • 1
    • 2
    Email author
  1. 1.State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiChina
  2. 2.Jiangnan UniversityInternational Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and TechnologyWuxiChina
  3. 3.School of Life SciencesYancheng Teachers UniversityYanchengChina

Personalised recommendations