Advertisement

Bioinformation transformation: From ionics to quantum ionics

  • Xiqi Zhang (张锡奇)
  • Markus Antonietti
  • Lei Jiang (江雷)Email author
Concept
  • 5 Downloads

生物信息转化: 从离子学到量子离子学

摘要

传统的神经记录技术是基于从离子学到电子学的生物信息 转换, 虽被广泛研究, 但其在神经科学和脑科学领域进展很小. 最 近, 生物离子通道中的离子和分子流动被看作是量子限域超流体, 即离子和分子的量子态可作为生物信息载体, 其吸收光谱在太赫 兹范围内, 因此太赫兹光可以作为一个工具来实现生物信号的非 接触检测. 我们提出两种研究方案: 一种是利用太赫兹响应研究生 物体系的神经信号, 另一种是利用太赫兹响应研究人工体系的量 子限域离子超流体, 并为生物体系中神经信号的检测提供优化参 数. 通过把量子离子学引入生物信息学领域, 将为神经信号研究提 供一个新的技术手段, 推动神经科学和脑科学的发展, 并发展量子 离子学技术.

Notes

Acknowledgements

This work was supported by the National Key R&D program of China (2016YFA0200803), and the National Natural Science Foundation (51973227 and 51603211).

References

  1. 1.
    Marmont G. Studies on the axon membrane. I. A new method. J Cell Comp Physiol, 1949, 34: 351–382CrossRefGoogle Scholar
  2. 2.
    Neher E, Sakmann B. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature, 1976, 260: 799–802CrossRefGoogle Scholar
  3. 3.
    Campbell PK, Jones KE, Normann RA. A 100 electrode intracortical array: Structural variability. Biomed Sci Instrum, 1990, 26: 161–165Google Scholar
  4. 4.
    Duan X, Gao R, Xie P, et al. Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor. Nat Nanotech, 2012, 7: 174–179CrossRefGoogle Scholar
  5. 5.
    Tian B, Liu J, Dvir T, et al. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat Mater, 2012, 11: 986–994CrossRefGoogle Scholar
  6. 6.
    Park DW, Schendel AA, Mikael S, et al. Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications. Nat Commun, 2014, 5: 5258CrossRefGoogle Scholar
  7. 7.
    Williamson A, Ferro M, Leleux P, et al. Localized neuron stimulation with organic electrochemical transistors on delaminating depth probes. Adv Mater, 2015, 27: 4405–4410CrossRefGoogle Scholar
  8. 8.
    Fu TM, Hong G, Zhou T, et al. Stable long-term chronic brain mapping at the single-neuron level. Nat Methods, 2016, 13: 875–882CrossRefGoogle Scholar
  9. 9.
    Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol, 1952, 117: 500–544CrossRefGoogle Scholar
  10. 10.
    Parker JL, Shariati NH, Karantonis DM. Electrically evoked compound action potential recording in peripheral nerves. Bioelectron Med, 2018, 1: 71–83CrossRefGoogle Scholar
  11. 11.
    Zhang X, Jiang L. Quantum-confined ion superfluid in nerve signal transmission. Nano Res, 2019, 12: 1219–1221CrossRefGoogle Scholar
  12. 12.
    Wen L, Zhang X, Tian Y, et al. Quantum-confined superfluid: From nature to artificial. Sci China Mater, 2018, 61: 1027–1032CrossRefGoogle Scholar
  13. 13.
    Zhang X, Liu H, Jiang L. Wettability and applications of nanochannels. Adv Mater, 2019, 31: 1804508CrossRefGoogle Scholar
  14. 14.
    Hao Y, Zhang X, Jiang L. Quantum-confined superfluid. Nanoscale Horiz, 2019, 4: 1029–1036CrossRefGoogle Scholar
  15. 15.
    Markram H. The human brain project. Sci Am, 2012, 306: 50–55CrossRefGoogle Scholar
  16. 16.
    Ruiz-Manresa F, Grundfest H. Synaptic electrogenesis in eel electroplaques. J General Physiol, 1971, 57: 71–92 (Note: The electrocytes in the electric eels could generate high potential of ∼600 V and high current density of 500 A/m2 within 20 ms.)CrossRefGoogle Scholar
  17. 17.
    Zhou Y, Morais-Cabral JH, Kaufman A, et al. Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 Å resolution. Nature, 2001, 414: 43–48CrossRefGoogle Scholar
  18. 18.
    Personal communication with Prof. Markus Antonietti, Max Planck Institute of Colloids and Interfaces, Germany. March, 2018Google Scholar
  19. 19.
    Funkner S, Niehues G, Schmidt DA, et al. Watching the low-frequency motions in aqueous salt solutions: The terahertz vibrational signatures of hydrated ions. J Am Chem Soc, 2012, 134: 1030–1035CrossRefGoogle Scholar
  20. 20.
    Liu G. The conjectures on physical mechanism of vertebrate nervous system. Chin Sci Bull, 2018, 63: 3864–3865CrossRefGoogle Scholar
  21. 21.
    Schmidt DA, Birer O, Funkner S, et al. Rattling in the cage: Ions as probes of sub-picosecond water network dynamics. J Am Chem Soc, 2009, 131: 18512–18517CrossRefGoogle Scholar
  22. 22.
    Kratochvil HT, Carr JK, Matulef K, et al. Instantaneous ion configurations in the K+ ion channel selectivity filter revealed by 2D IR spectroscopy. Science, 2016, 353: 1040–1044CrossRefGoogle Scholar
  23. 23.
    Blanchard F, Doi A, Tanaka T, et al. Real-time terahertz near-field microscope. Opt Express, 2011, 19: 8277–8284CrossRefGoogle Scholar
  24. 24.
    Xing G, Yan T, Das S, et al. Synthesis of crystalline porous organic salts with high proton conductivity. Angew Chem Int Ed, 2018, 57: 5345–5349CrossRefGoogle Scholar
  25. 25.
    Kuehl VA, Yin J, Duong PHH, et al. A highly ordered nanoporous, two-dimensional covalent organic framework with modifiable pores, and its application in water purification and ion sieving. J Am Chem Soc, 2018, 140: 18200–18207CrossRefGoogle Scholar
  26. 26.
    Zhang H, Hou J, Hu Y, et al. Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores. Sci Adv, 2018, 4: eaaq0066CrossRefGoogle Scholar
  27. 27.
    Li X, Zhang H, Wang P, et al. Fast and selective fluoride ion conduction in sub-1-nanometer metal-organic framework channels. Nat Commun, 2019, 10: 2490CrossRefGoogle Scholar
  28. 28.
    MacKinnon R. Potassium channels and the atomic basis of selective ion conduction (Nobel lecture). Angew Chem Int Ed, 2004, 43: 4265–4277CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xiqi Zhang (张锡奇)
    • 1
  • Markus Antonietti
    • 4
  • Lei Jiang (江雷)
    • 1
    • 2
    • 3
    Email author
  1. 1.Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and ChemistryChinese Academy of SciencesBeijingChina
  2. 2.School of Future TechnologyUniversity of Chinese Academy of SciencesBeijingChina
  3. 3.Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of ChemistryBeihang UniversityBeijingChina
  4. 4.Department of Colloid ChemistryMax Planck Institute of Colloids and InterfacesPotsdamGermany

Personalised recommendations