Advertisement

Excellent long-term reactivity of inhomogeneous nanoscale Fe-based metallic glass in wastewater purification

  • Shuang-Qin Chen (陈双琴)
  • Ke-Zhen Hui (惠可臻)
  • Liang-Zheng Dong (董梁正)
  • Zhun Li (李准)
  • Qing-hua Zhang (张庆华)
  • Lin Gu (谷林)
  • Wei Zhao (赵威)
  • Si Lan (兰司)
  • Yubin Ke (柯于斌)
  • Yang Shao (邵洋)Email author
  • Horst Hahn
  • Ke-Fu Yao (姚可夫)Email author
Articles
  • 90 Downloads

Abstract

Metallic glasses (MGs) have attracted great attention in wastewater treatment because of their high reactivity arising from amorphous structure, large residual stress and high density of low coordination sites. However, the reactivity of MGs would gradually slow down with time due to the passivation of active sites by corrosion products, resulting in limited long-term reactivity, which is also an unsolved key issue for established crystalline zero valent iron (ZVI) technology. Here, such problems are successfully overcome by introducing nanoscale chemical inhomogeneities in Fe-based MG (Fe-MGI), which apparently contributes to local galvanic cell effect and accelerates electron transfer during degradation process. More importantly, the selective depletion of Fe0 causes local volume shrinkage and crack formation, leading to self-peeling of precipitated corrosion products and reacted regions. Thereby fresh low coordination sites could be continuously provided, counteracting the mass transport and reactivity deteriorating problem. Consequently, Fe-MGI demonstrates excellent long-term reactivity and self-refreshing properties even in neutral solution. The present results provide not only a new candidate but also a new route of designing ZVI materials for wastewater treatment.

Keywords

Fe-based metallic glass inhomogeneity self-refreshing wastewater treatment catalysis 

纳米尺度非均匀性诱导自更新铁基非晶合金具有 优异的长期反应活性

摘要

铁基非晶合金作为亚稳态新型零价铁, 具有高活性亚稳态结 构、较大的残余应力和高密度低配位点等特性, 在催化和废水处 理中引起了广泛的关注; 但由于腐蚀产物沉淀覆盖活性位点, 非晶 合金的反应活性随着时间的推移而逐渐降低, 导致耐用性差. 腐蚀 产物沉淀造成长期反应活性降低也是阻碍传统晶态零价铁技术在 废水处理领域应用的主要问题之一. 本文通过在铁基非晶合金中 引入纳米尺度的化学不均匀性, 有助于构成局部原电池效应, 加速 电子在降解过程中的转移, 可以有效地克服这一问题. 更重要的是, 非晶合金中的零价铁被选择性腐蚀/脱合金, 导致反应区域局部体 积收缩和裂纹形成, 裂纹扩展使沉淀腐蚀产物和反应区域自剥落. 因此, 可以连续提供新的低配位, 消除质量传递和反应活性恶化的 问题. 本文所制备的具有成分不均匀的铁基非晶合金即使在中性 溶液中也具有良好的长期反应活性和自更新性能. 研究结果不仅 为废水处理提供了一种新材料, 而且为设计高活性零价铁材料提 供了一种新思路.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (NSFC, 51871129 and 51571127), the National Key Basic Research and Development Programme (2016YFB0300502), and the Natural Science Foundation of Jiangsu Province (BK20190480). The author Chen SQ appreciates the help from Heng-Wei Luan, Jia-Cheng Ge, Si-Nan Liu and Dr. Sudheer Kumar Yadav.

Supplementary material

40843_2019_1205_MOESM1_ESM.pdf (2.2 mb)
Supporting information is available in the online version of the paper.

References

  1. 1.
    Safdar M, Khan SU, Jänis J. Progress toward catalytic micro- and nanomotors for biomedical and environmental applications. Adv Mater, 2018, 30: 1703660CrossRefGoogle Scholar
  2. 2.
    Li WW, Yu HQ, He Z. Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies. Energy Environ Sci, 2013, 7: 911–924CrossRefGoogle Scholar
  3. 3.
    Zhang F, Zhang WB, Shi Z, et al. Nanowire-haired inorganic membranes with superhydrophilicity and underwater ultralow adhesive superoleophobicity for high-efficiency oil/water separation. Adv Mater, 2013, 25: 4192–4198CrossRefGoogle Scholar
  4. 4.
    Zhu Z, Wang W, Qi D, et al. Calcinable polymer membrane with revivability for efficient oily-water remediation. Adv Mater, 2018, 30: 1801870CrossRefGoogle Scholar
  5. 5.
    Chen B, Bi H, Ma Q, et al. Preparation of graphene-MoS2 hybrid aerogels as multifunctional sorbents for water remediation. Sci China Mater, 2017, 60: 1102–1108CrossRefGoogle Scholar
  6. 6.
    Ding L, Zhang Z, Li Y. Synthesis and catalytic property of uraniapalladium-graphene nanohybrids. Sci China Mater, 2017, 60: 399–406CrossRefGoogle Scholar
  7. 7.
    Li K, Jiao T, Xing R, et al. Fabrication of tunable hierarchical mxene@aunps nanocomposites constructed by self-reduction reactions with enhanced catalytic performances. Sci China Mater, 2018, 61: 728–736CrossRefGoogle Scholar
  8. 8.
    Ling L, Huang XY, Zhang WX. Enrichment of precious metals from wastewater with core-shell nanoparticles of iron. Adv Mater, 2018, 30: 1705703CrossRefGoogle Scholar
  9. 9.
    Wang Q, Tian S, Long J, et al. Use of Fe(II)Fe(III)-LDHs prepared by co-precipitation method in a heterogeneous-Fenton process for degradation of methylene blue. Catal Today, 2014, 224: 41–48CrossRefGoogle Scholar
  10. 10.
    Singh P, Raizada P, Kumari S, et al. Solar-Fenton removal of malachite green with novel Fe0-activated carbon nanocomposite. Appl Catal A-General, 2014, 476: 9–18CrossRefGoogle Scholar
  11. 11.
    Chen J, Liu W, Li Z, et al. Thermally-assisted photodegradation of lignin by TiO2/H2O2 under visible/near-infrared light irradiation. Sci China Mater, 2017, 61: 382–390CrossRefGoogle Scholar
  12. 12.
    Miklos DB, Remy C, Jekel M, et al. Evaluation of advanced oxidation processes for water and wastewater treatment-A critical review. Water Res, 2018, 139: 118–131CrossRefGoogle Scholar
  13. 13.
    Iskandar F, Nandiyanto A, Yun K, et al. Enhanced photocatalytic performance of brookite TiO2 macroporous particles prepared by spray drying with colloidal templating. Adv Mater, 2007, 19: 1408–1412CrossRefGoogle Scholar
  14. 14.
    Kumar A, Sharma G, Naushad M, et al. Spion/β-cyclodextrin coreshell nanostructures for oil spill remediation and organic pollutant removal from waste water. Chem Eng J, 2015, 280: 175–187CrossRefGoogle Scholar
  15. 15.
    Zhang X, Wei W, Zhang S, et al. Advanced 3D nanohybrid foam based on graphene oxide: Facile fabrication strategy, interfacial synergetic mechanism, and excellent photocatalytic performance. Sci China Mater, 2019, 62: 1888–1897Google Scholar
  16. 16.
    Gillham RW, O’Hannesin SF. Enhanced degradation of halogenated aliphatics by zero-valent iron. Ground Water, 1994, 32: 958–967CrossRefGoogle Scholar
  17. 17.
    Guan X, Sun Y, Qin H, et al. The limitations of applying zerovalent iron technology in contaminants sequestration and the corresponding countermeasures: The development in zero-valent iron technology in the last two decades (1994-2014). Water Res, 2015, 75: 224–248CrossRefGoogle Scholar
  18. 18.
    Wang JQ, Liu YH, Chen MW, et al. Rapid degradation of azo dye by Fe-based metallic glass powder. Adv Funct Mater, 2012, 22: 2567–2570CrossRefGoogle Scholar
  19. 19.
    Qin XD, Zhu ZW, Liu G, et al. Ultrafast degradation of azo dyes catalyzed by cobalt-based metallic glass. Sci Rep, 2015, 5: 18226CrossRefGoogle Scholar
  20. 20.
    Jia Z, Duan X, Qin P, et al. Disordered atomic packing structure of metallic glass: Toward ultrafast hydroxyl radicals production rate and strong electron transfer ability in catalytic performance. Adv Funct Mater, 2017, 27: 1702258CrossRefGoogle Scholar
  21. 21.
    Wang Q, Chen M, Lin P, et al. Investigation of FePC amorphous alloys with self-renewing behaviour for highly efficient decolorization of methylene blue. J Mater Chem A, 2018, 6: 10686–10699CrossRefGoogle Scholar
  22. 22.
    Tang Y, Shao Y, Chen N, et al. Rapid decomposition of Direct Blue 6 in neutral solution by Fe-B amorphous alloys. RSC Adv, 2015, 5: 6215–6221CrossRefGoogle Scholar
  23. 23.
    Tang Y, Shao Y, Chen N, et al. Insight into the high reactivity of commercial Fe-Si-B amorphous zero-valent iron in degrading azo dye solutions. RSC Adv, 2015, 5: 34032–34039CrossRefGoogle Scholar
  24. 24.
    Wang PP, Wang JQ, Huo JT, et al. Fast degradation of azo dye by nanocrystallized Fe-based alloys. Sci China-Phys Mech Astron, 2017, 60: 076112CrossRefGoogle Scholar
  25. 25.
    Debenedetti PG, Stillinger FH. Supercooled liquids and the glass transition. Nature, 2001, 410: 259–267CrossRefGoogle Scholar
  26. 26.
    Chen SQ, Shao Y, Cheng MT, et al. Effect of residual stress on azo dye degradation capability of Fe-based metallic glass. J Non-Crystalline Solids, 2017, 473: 74–78CrossRefGoogle Scholar
  27. 27.
    Chen S, Chen N, Cheng M, et al. Multi-phase nanocrystallization induced fast degradation of methyl orange by annealing Fe-based amorphous ribbons. Intermetallics, 2017, 90: 30–35CrossRefGoogle Scholar
  28. 28.
    Chen S, Yang G, Luo S, et al. Unexpected high performance of Fe-based nanocrystallized ribbons for azo dye decomposition. J Mater Chem A, 2017, 5: 14230–14240CrossRefGoogle Scholar
  29. 29.
    Liang SX, Jia Z, Liu YJ, et al. Compelling rejuvenated catalytic performance in metallic glasses. Adv Mater, 2018, 30: 1802764CrossRefGoogle Scholar
  30. 30.
    Ke Y, He C, Zheng H, et al. The time-of-flight small-angle neutron spectrometer at China spallation neutron source. Neutron News, 2018, 29: 14–17CrossRefGoogle Scholar
  31. 31.
    Matsuura M, Nishijima M, Takenaka K, et al. Evolution of fcc Cu clusters and their structure changes in the soft magnetic Fe85.2Si1 B9P4Cu0.8 (NANOMET) and FINEMET alloys observed by X-ray absorption fine structure. J Appl Phys, 2015, 117: 17A324Google Scholar
  32. 32.
    Sharma P, Zhang X, Zhang Y, et al. Competition driven nano-crystallization in high B s and low coreloss Fe-Si-B-P-Cu soft magnetic alloys. Scripta Mater, 2015, 95: 3–6CrossRefGoogle Scholar
  33. 33.
    Abaidia SEH, Wiedenmann A. Thermal stability of the bulk metallic glass Zr46.75Ti8.25Cu7.5Ni10Be27.5 studied by SANS. Physica B-Condensed Matter, 2000, 276-278: 454–455CrossRefGoogle Scholar
  34. 34.
    Jia Z, Zhang WC, Wang WM, et al. Amorphous Fe78Si9B13 alloy: An efficient and reusable photo-enhanced Fenton-like catalyst in degradation of cibacron brilliant red 3B-A dye under UV-vis light. Appl Catal B-Environ, 2016, 192: 46–56CrossRefGoogle Scholar
  35. 35.
    Xie S, Huang P, Kruzic JJ, et al. A highly efficient degradation mechanism of methyl orange using Fe-based metallic glass powders. Sci Rep, 2016, 6: 21947CrossRefGoogle Scholar
  36. 36.
    Wang JQ, Liu YH, Chen MW, et al. Excellent capability in degrading azo dyes by MgZn-based metallic glass powders. Sci Rep, 2012, 2: 418CrossRefGoogle Scholar
  37. 37.
    Wang P, Wang JQ, Li H, et al. Fast decolorization of azo dyes in both alkaline and acidic solutions by Al-based metallic glasses. J Alloys Compd, 2017, 701: 759–767CrossRefGoogle Scholar
  38. 38.
    Li C, Zhuang Z, Huang F, et al. Recycling rare earth elements from industrial wastewater with flowerlike nano-Mg(OH)2. ACS Appl Mater Interfaces, 2013, 5: 9719–9725CrossRefGoogle Scholar
  39. 39.
    Liu M, Wang Y, Chen L, et al. Mg(OH)2 supported nanoscale zero valent iron enhancing the removal of Pb(II) from aqueous solution. ACS Appl Mater Interfaces, 2015, 7: 7961–7969CrossRefGoogle Scholar
  40. 40.
    Jia Z, Wang Q, Sun L, et al. Attractive in situ self-reconstructed hierarchical gradient structure of metallic glass for high efficiency and remarkable stability in catalytic performance. Adv Funct Mater, 2019, 29: 1807857CrossRefGoogle Scholar
  41. 41.
    Mielczarski JA, Atenas GM, Mielczarski E. Role of iron surface oxidation layers in decomposition of azo-dye water pollutants in weak acidic solutions. Appl Catal B-Environ, 2005, 56: 289–303CrossRefGoogle Scholar
  42. 42.
    Cai C, Zhang H, Zhong X, et al. Ultrasound enhanced heterogeneous activation of peroxymonosulfate by a bimetallic Fe-Co/SBA-15 catalyst for the degradation of Orange II in water. J Hazard Mater, 2015, 283: 70–79CrossRefGoogle Scholar
  43. 43.
    Liang SX, Jia Z, Zhang WC, et al. Rapid malachite green degradation using Fe73.5Si13.5B9Cu1Nb3 metallic glass for activation of persulfate under UV-vis light. Mater Des, 2017, 119: 244–253CrossRefGoogle Scholar
  44. 44.
    Deng Z, Zhang XH, Chan KC, et al. Fe-based metallic glass catalyst with nanoporous surface for azo dye degradation. Chemosphere, 2017, 174: 76–81CrossRefGoogle Scholar
  45. 45.
    Jia Z, Duan X, Zhang W, et al. Ultra-sustainable Fe78Si9B13 metallic glass as a catalyst for activation of persulfate on methylene blue degradation under UV-vis light. Sci Rep, 2016, 6: 38520CrossRefGoogle Scholar
  46. 46.
    Fujita T, Guan P, McKenna K, et al. Atomic origins of the high catalytic activity of nanoporous gold. Nat Mater, 2012, 11: 775–780CrossRefGoogle Scholar
  47. 47.
    Detsi E, Cook JB, Lesel BK, et al. Mesoporous Ni60Fe30Mn10-alloy based metal/metal oxide composite thick films as highly active and robust oxygen evolution catalysts. Energy Environ Sci, 2016, 9: 540–549CrossRefGoogle Scholar
  48. 48.
    Tan Y, Wang H, Liu P, et al. 3D nanoporous metal phosphides toward high-efficiency electrochemical hydrogen production. Adv Mater, 2016, 28: 2951–2955CrossRefGoogle Scholar
  49. 49.
    Paschalidou EM, Celegato F, Scaglione F, et al. The mechanism of generating nanoporous Au by de-alloying amorphous alloys. Acta Mater, 2016, 119: 177–183CrossRefGoogle Scholar
  50. 50.
    Gupta G, Thorp JC, Mara NA, et al. Morphology and porosity of nanoporous Au thin films formed by dealloying of AuxSi1-x. J Appl Phys, 2012, 112: 094320CrossRefGoogle Scholar
  51. 51.
    Lu X, Bischoff E, Spolenak R, et al. Investigation of dealloying in Au-Ag thin films by quantitative electron probe microanalysis. Scripta Mater, 2007, 56: 557–560CrossRefGoogle Scholar
  52. 52.
    Parida S, Kramer D, Volkert CA, et al. Volume change during the formation of nanoporous gold by dealloying. Phys Rev Lett, 2006, 97: 035504CrossRefGoogle Scholar
  53. 53.
    Suryanarayana C, Inoue A. Iron-based bulk metallic glasses. Int Mater Rev, 2013, 58: 131–166CrossRefGoogle Scholar
  54. 54.
    Jafari S, Beitollahi A, Yekta BE, et al. Atom probe analysis and magnetic properties of nanocrystalline Fe84.3Si4B8P3Cu0.7. J Alloys Compd, 2016, 674: 136–144CrossRefGoogle Scholar
  55. 55.
    Hono K, Inoue A, Sakurai T. Atom probe analysis of Fe73.5Si13.5 B9Nb3Cu1 nanocrystalline soft magnetic material. Appl Phys Lett, 1991, 58: 2180–2182CrossRefGoogle Scholar
  56. 56.
    Hono K, Ping DH, Ohnuma M, et al. Cu clustering and Si partitioning in the early crystallization stage of an Fe73.5Si13.5B9Nb3Cu1 amorphous alloy. Acta Mater, 1999, 47: 997–1006CrossRefGoogle Scholar
  57. 57.
    Ayers JD, Harris VG, Sprague JA, et al. The local atomic order of Cu and Fe in heat treated Fe73.5Nb3Cu1Si13.5B9 ribbons. IEEE Trans Magn, 1993, 29: 2664–2666CrossRefGoogle Scholar
  58. 58.
    Ayers JD, Harris VG, Sprague JA, et al. On the role of Cu and Nb in the formation of nanocrystals in amorphous Fe73.5Nb3Cu1Si13.5 B9. Appl Phys Lett, 1994, 64: 974–976CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Shuang-Qin Chen (陈双琴)
    • 1
    • 2
  • Ke-Zhen Hui (惠可臻)
    • 1
  • Liang-Zheng Dong (董梁正)
    • 1
  • Zhun Li (李准)
    • 3
  • Qing-hua Zhang (张庆华)
    • 4
  • Lin Gu (谷林)
    • 4
  • Wei Zhao (赵威)
    • 1
  • Si Lan (兰司)
    • 2
  • Yubin Ke (柯于斌)
    • 6
  • Yang Shao (邵洋)
    • 1
    Email author
  • Horst Hahn
    • 2
    • 5
  • Ke-Fu Yao (姚可夫)
    • 1
    Email author
  1. 1.School of Material Science and EngineeringTsinghua UniversityBeijingChina
  2. 2.Herbert Gleiter Institute of NanoscienceNanjing University of Science and TechnologyNanjingChina
  3. 3.China Iron & Steel Research Institute Group100081China
  4. 4.Beijing Laboratory for Electron MicroscopyInstitute of Physics, CAS100190China
  5. 5.Institute of NanotechnologyKarlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
  6. 6.China Spallation Neutron Source, Institute of High Energy PhysicsChinese Academy of SciencesDongguanChina

Personalised recommendations