Microporous polymer based on hexaazatriphenylene-fused triptycene for CO2 capture and conversion

  • Hui Ma (马辉)
  • Zhen Wang (王震)
  • Yu-Hang Zhao (赵宇航)
  • Qiang Ou (欧强)
  • Bien Tan (谭必恩)
  • Chun Zhang (张春)Email author


Chemical conversion of carbon dioxide (CO2) to value-added useful chemicals like cyclic carbonates represents one potential solution to climate warming. Here, a kind of porous organic polymer (HAT-TP) with large surface area and excellent carbon dioxide uptake capacity is prepared via a condensation reaction to introduce hexaazatriphenylene (HAT) units into triptycene (TP)-based microporous polymer. HAT-TP can coordinate with zinc ions, and the resulting polymer (Zn/HAT-TP) can be utilized as an efficient recyclable catalyst for chemical conversion of CO2 into cyclic carbonates with epoxides.


microporous polymer CO2 capture CO2 conversion triptycene hexaazatriphenylene 

六氮杂苯并菲扩环三蝶烯微孔聚合物的合成及其 在二氧化碳捕获与催化转化领域的应用


作为二氧化碳化学转化的研究热点, 利用二氧化碳作为原料 合成有机小分子化合物被认为是解决温室效应的有效途径之一. 本文合成了一种基于六氮杂苯并菲扩环三蝶烯的有机微孔聚合物 (HAT-TP). 该多孔聚合物表现出较高比表面积以及较好的二氧化 碳吸附性能力. 通过与锌离子配位, Zn/HAT-TP聚合物还能够作为 一类良好的非均相催化剂催化二氧化碳与环氧化物反应生成对应 的环状碳酸酯.



This work was supported by the National Natural Science Foundation of China (21875079 and 21672078). We thank the Analytical and Testing Center of Huazhong University of Science and Technology for related analysis. We also thank Dr. Yu Yao and Wuhan National High Magnetic Field Center for analysis of solid-state NMR.

Author contributions

Zhang C and Ma H conceived, coordinated the research, and designed the experiments. Zhang C acquired funding. Ma H conducted all experiments, analyzed the data and wrote the manuscript. Zhang C supervised the whole project. All the authors participated in discussions of the research.

Supplementary material

40843_2019_1196_MOESM1_ESM.pdf (1.1 mb)
Microporous polymer based on hexaazatriphenylene-fused triptycene for CO2 capture and conversion


  1. 1.
    Otto A, Grube T, Schiebahn S, et al. Closing the loop: Captured CO2 as a feedstock in the chemical industry. Energy Environ Sci, 2015, 8: 3283–3297CrossRefGoogle Scholar
  2. 2.
    Kar S, Sen R, Goeppert A, et al. Integrative CO2 capture and hydrogenation to methanol with reusable catalyst and amine: Toward a carbon neutral methanol economy. J Am Chem Soc, 2018, 140: 1580–1583CrossRefGoogle Scholar
  3. 3.
    Rao H, Schmidt LC, Bonin J, et al. Visible-light-driven methane formation from CO2 with a molecular iron catalyst. Nature, 2017, 548: 74–77CrossRefGoogle Scholar
  4. 4.
    Trickett CA, Helal A, Al-Maythalony BA, et al. The chemistry of metal-organic frameworks for CO2 capture, regeneration and conversion. Nat Rev Mater, 2017, 2: 17045CrossRefGoogle Scholar
  5. 5.
    Shaikh RR, Pornpraprom S, D’Elia V. Catalytic strategies for the cycloaddition of pure, diluted, and waste CO2 to epoxides under ambient conditions. ACS Catal, 2018, 8: 419–450CrossRefGoogle Scholar
  6. 6.
    Liang J, Chen RP, Wang XY, et al. Postsynthetic ionization of an imidazole-containing metal-organic framework for the cycloaddition of carbon dioxide and epoxides. Chem Sci, 2017, 8: 1570–1575CrossRefGoogle Scholar
  7. 7.
    Liu TT, Liang J, Xu R, et al. Salen-Co(iii) insertion in multivariate cationic metal-organic frameworks for the enhanced cycloaddition reaction of carbon dioxide. Chem Commun, 2019, 55: 4063–4066CrossRefGoogle Scholar
  8. 8.
    Castro-Osma JA, Lamb KJ, North M. Cr(salophen) complex catalyzed cyclic carbonate synthesis at ambient temperature and pressure. ACS Catal, 2016, 6: 5012–5025CrossRefGoogle Scholar
  9. 9.
    Kreider-Mueller A, Quinlivan PJ, Owen JS, et al. Synthesis and structures of cadmium carboxylate and thiocarboxylate compounds with a sulfur-rich coordination environment: Carboxylate exchange kinetics involving tris(2-mercapto-1-t-butylimidazolyl) hydroborato cadmium complexes, [TmBut]Cd(O2CR). Inorg Chem, 2015, 54: 3835–3850CrossRefGoogle Scholar
  10. 10.
    Buchard A, Kember MR, Sandeman KG, et al. A bimetallic iron(iii) catalyst for CO2/epoxide coupling. Chem Commun, 2011, 47: 212–214CrossRefGoogle Scholar
  11. 11.
    North M, Quek SCZ, Pridmore NE, et al. Aluminum(salen) complexes as catalysts for the kinetic resolution of terminal epoxides via CO2 coupling. ACS Catal, 2015, 5: 3398–3402CrossRefGoogle Scholar
  12. 12.
    Baleizão C, Gigante B, Sabater MJ, et al. On the activity of chiral chromium salen complexes covalently bound to solid silicates for the enantioselective epoxide ring opening. Appl Catal A-General, 2002, 228: 279–288CrossRefGoogle Scholar
  13. 13.
    Lu XB, Wang H, He R. Aluminum phthalocyanine complex covalently bonded to MCM-41 silica as heterogeneous catalyst for the synthesis of cyclic carbonates. J Mol Catal A-Chem, 2002, 186: 33–42CrossRefGoogle Scholar
  14. 14.
    Das S, Heasman P, Ben T, et al. Porous organic materials: Strategic design and structure-function correlation. Chem Rev, 2017, 117: 1515–1563CrossRefGoogle Scholar
  15. 15.
    Chen Q, Luo M, Hammershøj P, et al. Microporous polycarbazole with high specific surface area for gas storage and separation. J Am Chem Soc, 2012, 134: 6084–6087CrossRefGoogle Scholar
  16. 16.
    Luo Y, Li B, Wang W, et al. Hypercrosslinked aromatic heterocyclic microporous polymers: A new class of highly selective CO2 capturing materials. Adv Mater, 2012, 24: 5703–5707CrossRefGoogle Scholar
  17. 17.
    Ji G, Yang Z, Zhang H, et al. Hierarchically mesoporous o-hydroxyazobenzene polymers: Synthesis and their applications in CO2 capture and conversion. Angew Chem Int Ed, 2016, 55: 9685–9689CrossRefGoogle Scholar
  18. 18.
    Xie Y, Wang TT, Liu XH, et al. Capture and conversion of CO2 at ambient conditions by a conjugated microporous polymer. Nat Commun, 2013, 4: 1960–1966CrossRefGoogle Scholar
  19. 19.
    Wang S, Song K, Zhang C, et al. A novel metalporphyrin-based microporous organic polymer with high CO2 uptake and efficient chemical conversion of CO2 under ambient conditions. J Mater Chem A, 2017, 5: 1509–1515CrossRefGoogle Scholar
  20. 20.
    Chen J, Zhong M, Tao L, et al. The cooperation of porphyrin-based porous polymer and thermal-responsive ionic liquid for efficient CO2 cycloaddition reaction. Green Chem, 2018, 20: 903–911CrossRefGoogle Scholar
  21. 21.
    Liang J, Huang YB, Cao R. Metal-organic frameworks and porous organic polymers for sustainable fixation of carbon dioxide into cyclic carbonates. Coord Chem Rev, 2019, 378: 32–65CrossRefGoogle Scholar
  22. 22.
    Liu TT, Liang J, Huang YB, et al. A bifunctional cationic porous organic polymer based on a Salen-(Al) metalloligand for the cycloaddition of carbon dioxide to produce cyclic carbonates. Chem Commun, 2016, 52: 13288–13291CrossRefGoogle Scholar
  23. 23.
    Liu TT, Xu R, Yi JD, et al. Imidazolium-based cationic covalent triazine frameworks for highly efficient cycloaddition of carbon dioxide. ChemCatChem, 2018, 10: 2036–2040CrossRefGoogle Scholar
  24. 24.
    Yi JD, Xu R, Wu Q, et al. Atomically dispersed iron-nitrogen active sites within porphyrinic triazine-based frameworks for oxygen reduction reaction in both alkaline and acidic media. ACS Energy Lett, 2018, 3: 883–889CrossRefGoogle Scholar
  25. 25.
    Zhao D, Kong C, Du H, et al. A molecular-templating strategy to polyamine-incorporated porous organic polymers for unprecedented CO2 capture and separation. Sci China Mater, 2019, 62: 448–454CrossRefGoogle Scholar
  26. 26.
    Segura JL, Juárez R, Ramos M, et al. Hexaazatriphenylene (HAT) derivatives: From synthesis to molecular design, self-organization and device applications. Chem Soc Rev, 2015, 44: 6850–6885CrossRefGoogle Scholar
  27. 27.
    Gould CA, Darago LE, Gonzalez MI, et al. A trinuclear radical-bridged lanthanide single-molecule magnet. Angew Chem Int Ed, 2017, 56: 10103–10107CrossRefGoogle Scholar
  28. 28.
    Tsuji Y, Yamamoto K, Yamauchi K, et al. Near-infrared light-driven hydrogen evolution from water using a polypyridyl triruthenium photosensitizer. Angew Chem Int Ed, 2018, 57: 208–212CrossRefGoogle Scholar
  29. 29.
    Yuan F, Li J, Namuangruk S, et al. Microporous, self-segregated, graphenal polymer nanosheets prepared by dehydrogenative condensation of aza-PAHs building blocks in the solid state. Chem Mater, 2017, 29: 3971–3979CrossRefGoogle Scholar
  30. 30.
    Ibáñez S, Poyatos M, Peris E. A D3h-symmetry hexaazatriphenylene-tris-N-heterocyclic carbene ligand and its coordination to iridium and gold: Preliminary catalytic studies. Chem Commun, 2017, 53: 3733–3736CrossRefGoogle Scholar
  31. 31.
    Chen JJ, Zhai TL, Chen YF, et al. A triptycene-based two-dimensional porous organic polymeric nanosheet. Polym Chem, 2017, 8: 5533–5538CrossRefGoogle Scholar
  32. 32.
    Ma H, Chen JJ, Tan L, et al. Nitrogen-rich triptycene-based porous polymer for gas storage and iodine enrichment. ACS Macro Lett, 2016, 5: 1039–1043CrossRefGoogle Scholar
  33. 33.
    Zhai TL, Tan L, Luo Y, et al. Microporous polymers from a carbazole-based triptycene monomer: Synthesis and their applications for gas uptake. Chem Asian J, 2016, 11: 294–298CrossRefGoogle Scholar
  34. 34.
    Zhang C, Zhu PC, Tan L, et al. Synthesis and properties of organic microporous polymers from the monomer of hexaphenylbenzene based triptycene. Polymer, 2016, 82: 100–104CrossRefGoogle Scholar
  35. 35.
    Zhang C, Zhu PC, Tan L, et al. Triptycene-based hyper-cross-linked polymer sponge for gas storage and water treatment. Macromolecules, 2015, 48: 8509–8514CrossRefGoogle Scholar
  36. 36.
    Zhang C, Wang JJ, Liu Y, et al. Main-chain organometallic microporous polymers based on triptycene: Synthesis and catalytic application in the Suzuki-Miyaura coupling reaction. Chem Eur J, 2013, 19: 5004–5008CrossRefGoogle Scholar
  37. 37.
    Zhang C, Liu Y, Li B, et al. Triptycene-based microporous polymers: Synthesis and their gas storage properties. ACS Macro Lett, 2012, 1: 190–193CrossRefGoogle Scholar
  38. 38.
    Mahmood J, Kim SJ, Noh HJ, et al. A robust 3D cage-like ultra-microporous network structure with high gas-uptake capacity. Angew Chem Int Ed, 2018, 57: 3415–3420CrossRefGoogle Scholar
  39. 39.
    Chong JH, MacLachlan MJ. Robust non-interpenetrating co-ordination frameworks from new shape-persistent building blocks. Inorg Chem, 2006, 45: 1442–1444CrossRefGoogle Scholar
  40. 40.
    Mastalerz M, Sieste S, Cenic M, et al. Two-step synthesis of hexaammonium triptycene: An air-stable building block for condensation reactions to extended triptycene derivatives. J Org Chem, 2011, 76: 6389–6393CrossRefGoogle Scholar
  41. 41.
    Zhang C, Wang Z, Tan L, et al. A porous tricyclooxacalixarene cage based on tetraphenylethylene. Angew Chem Int Ed, 2015, 54: 9244–9248CrossRefGoogle Scholar
  42. 42.
    Wang Z, Luo Y, Zhai TL, et al. Porous triphenylbenzene-based bicyclooxacalixarene cage for selective adsorption of CO2/N2. Org Lett, 2016, 18: 4574–4577CrossRefGoogle Scholar
  43. 43.
    Wang Z, Ma H, Zhai TL, et al. Networked cages for enhanced CO2 capture and sensing. Adv Sci, 2018, 5: 1800141CrossRefGoogle Scholar
  44. 44.
    Dzara MJ, Artyushkova K, Shulda S, et al. Characterization of complex interactions at the gas-solid interface with in situ spectroscopy: The case of nitrogen-functionalized carbon. J Phys Chem C, 2019, 123: 9074–9086CrossRefGoogle Scholar
  45. 45.
    Yamaguchi K, Ebitani K, Yoshida T, et al. Mg-Al mixed oxides as highly active acid-base catalysts for cycloaddition of carbon dioxide to epoxides. J Am Chem Soc, 1999, 121: 4526–4527CrossRefGoogle Scholar
  46. 46.
    Sit WN, Ng SM, Kwong KY, et al. Coupling reactions of CO2 with neat epoxides catalyzed by PPN salts to yield cyclic carbonates. J Org Chem, 2005, 70: 8583–8586CrossRefGoogle Scholar
  47. 47.
    Sun Q, Aguila B, Perman J, et al. Flexibility matters: Cooperative active sites in covalent organic framework and threaded ionic polymer. J Am Chem Soc, 2016, 138: 15790–15796CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Hui Ma (马辉)
    • 1
  • Zhen Wang (王震)
    • 1
  • Yu-Hang Zhao (赵宇航)
    • 1
  • Qiang Ou (欧强)
    • 1
  • Bien Tan (谭必恩)
    • 2
  • Chun Zhang (张春)
    • 1
    Email author
  1. 1.College of Life Science and Technology, National Engineering Research Center for NanomedicineHuazhong University of Science and TechnologyWuhanChina
  2. 2.School of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations