Science China Materials

, Volume 62, Issue 12, pp 1821–1830 | Cite as

Ag4Hg(SeO3)2(SeO4): a novel SHG material created in mixed valent selenium oxides by in situ synthesis

  • Xiao-Xue Wang (王晓雪)
  • Xiao-Bao Li (李小宝)
  • Chun-Li Hu (胡春丽)
  • Fang Kong (孔芳)Email author
  • Jiang-Gao Mao (毛江高)Email author


Explorations of new second harmonic generation materials in Ag+-Hg2+/Bi3+-selenites systems afforded three new silver selenium oxides, namely, Ag4Hg(SeO3)2(SeO4) (1), Ag2Bi2(SeO3)3(SeO4) (2) and Ag5Bi(SeO3)4 (3). They exhibit flexible crystal chemistry. Compounds 1 and 2 are mixed valence selenium oxides containing Se(IV) and Se(VI) cations simultaneously. Compounds 1 and 3 exhibit a 3D open framework with 4-, 6- and 8-member polyhedral ring tunnels along a, b and c axes. Compound 1 crystallized in a polar space group and could display a subtle frequency doubling efficiency about 35% of the commercial KH2PO4 (KDP). UV-vis-NIR spectra reveal that compounds 1–3 are wide-band semiconductors with the optical bandgaps of 3.11, 3.65, 3.58 eV respectively. Theoretical calculations disclose that compounds 2 and 3 are indirect band gap structures and their bandgaps are determined by Ag, Bi, Se and O atoms together.


SHG material in situ synthesis mixed valence selenium oxide selenite 

Ag4Hg(SeO3)2(SeO4): 原位合成法制备的混价硒氧化物类新型倍频材料


我们在Ag+-Hg2+/Bi3+-SeO32−体系探索合成新型非线性光学材料时获得了三例结构新颖的银硒氧化物: Ag4Hg(SeO3)2(SeO4)(1), Ag2Bi2(SeO3)3(SeO4) (2) 和 Ag5Bi(SeO3)4 (3). 它们展现了丰富的晶体化学: 1和2 为同时含六价和四价硒的混价氧化物; 1和3为在a, bc轴含四, 六或八元环孔道的三维开放式骨架结构; 1结晶于非心和极性空间群, 并且可以显示出明显的倍频信号, 约为商用KDP的35%. 紫外漫反射光谱表明这三例化合物均为宽带隙半导体, 其光学带隙分别为3.11, 3.65和3.58 eV. 理论计算发现材料. 2和3为间接带隙半导体, 其带隙是由Ag, Bi, Se和O原子共同决定的.



This work was supported by the National Natural Science Foundation of China (21773244 and 21875248), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB20000000), and the Natural Science Foundation of Fujian Province (2018J01025).

Conflict of interest The authors declare that they have no conflict of interest.

Supplementary material

40843_2019_1193_MOESM1_ESM.pdf (29.4 mb)
Ag4Hg(SeO3)2(SeO4): A Novel SHG Material Created in Mixed Valent Selenium Oxides by In Situ Synthesis


  1. 1.
    Shi G, Wang Y, Zhang F, et al. Finding the next deep-ultraviolet nonlinear optical material: NH4B4O6F. J Am Chem Soc, 2017, 139: 10645–10648Google Scholar
  2. 2.
    Kang L, Zhang X, Liang F, et al. Poly(difluorophosphazene) as the first deep-ultraviolet nonlinear optical polymer: a first-principles prediction. Angew Chem Int Ed, 2019, 58: 10250–10254Google Scholar
  3. 3.
    Guo SP, Chi Y, Xue HG. SnI4·(S8)2: A novel adduct-type infrared second-order nonlinear optical crystal. Angew Chem Int Ed, 2018, 57: 11540–11543Google Scholar
  4. 4.
    Xie Z, Wang Y, Cheng S, et al. Synthesis, characterization, and theoretical analysis of three new nonlinear optical materials K7MRE2B15O30 (M= Ca and Ba, RE= La and Bi). Sci China Mater, 2019, 62: 1151–1161Google Scholar
  5. 5.
    Kim SH, Yeon J, Halasyamani PS. Noncentrosymmetric polar oxide material, Pb3SeO5: synthesis, characterization, electronic structure calculations, and structure-property relationships. Chem Mater, 2009, 21: 5335–5342Google Scholar
  6. 6.
    Bang S, Ok KM. Structure-directing effect of alkali metal cations in new molybdenum selenites, Na2Mo2O5(SeO3)2, K2Mo2O5(SeO3)2, and Rb2Mo3O7(SeO3)3. Inorg Chem, 2015, 54: 8832–8839Google Scholar
  7. 7.
    Xia Z, Poeppelmeier KR. Chemistry-inspired adaptable framework structures. Acc Chem Res, 2017, 50: 1222–1230Google Scholar
  8. 8.
    Harrison WTA, Dussack LL, Jacobson AJ. Syntheses, crystal structures, and properties of new layered molybdenum(VI) selenites: (NH4)2(MoO3)3SeO3 and Cs2(MoO3)3SeO3. Inorg Chem, 1994, 33: 6043–6049Google Scholar
  9. 9.
    Nguyen SD, Kim SH, Halasyamani PS. Synthesis, characterization, and structure-property relationships in two new polar oxides: Zn2(MoO4)(SeO3) and Zn2(MoO4)(TeO3). Inorg Chem, 2011, 50: 5215–5222Google Scholar
  10. 10.
    Cao XL, Hu CL, Xu X, et al. Pb2TiOF(SeO3)2Cl and Pb2NbO2-(SeO3)2Cl: small changes in structure induced a very large SHG enhancement. Chem Commun, 2013, 49: 9965–9967Google Scholar
  11. 11.
    Liang ML, Hu CL, Kong F, et al. BiFSeO3: An excellent SHG material designed by aliovalent substitution. J Am Chem Soc, 2016, 138: 9433–9436Google Scholar
  12. 12.
    You F, Liang F, Huang Q, et al. Pb2GaF2(SeO3)2Cl: band engineering strategy by aliovalent substitution for enlarging bandgap while keeping strong second harmonic generation response. J Am Chem Soc, 2019, 141: 748–752Google Scholar
  13. 13.
    Ma YX, Hu CL, Li BX, et al. PbCdF(SeO3)(NO3): A nonlinear optical material produced by synergistic effect of four functional units. Inorg Chem, 2018, 57: 11839–11846Google Scholar
  14. 14.
    Yu H, Nisbet ML, Poeppelmeier KR. Assisting the effective design of polar iodates with early transition-metal oxide fluoride anions. J Am Chem Soc, 2018, 140: 8868–8876Google Scholar
  15. 15.
    Zhang X, Wu H, Yu H, et al. Ba4M(CO3)2(BO3)2 (M=Ba, Sr): two borate-carbonates synthesized by open high temperature solution method. Sci China Mater, 2019, 62: 1023–1032Google Scholar
  16. 16.
    Yu H, Koocher NZ, Rondinelli JM, et al. Pb2BO3I: a borate iodide with the largest second-harmonic generation (SHG) response in the KBe2BO3F2 (KBBF) family of nonlinear optical (NLO) materials. Angew Chem Int Ed, 2018, 57: 6100–6103Google Scholar
  17. 17.
    Dong X, Huang L, Hu C, et al. CsSbF2SO4: an excellent ultraviolet nonlinear optical sulfate with a KTiOPO4 (KTP)-type structure. Angew Chem Int Ed, 2019, 58: 6528–6534Google Scholar
  18. 18.
    Lee DW, Bak D, Kim SB, et al. Effect of the framework flexibility on the centricities in centrosymmetric In2Zn(SeO3)4 and non-centrosymmetric Ga2Zn(TeO3)4. Inorg Chem, 2012, 51: 7844–7850Google Scholar
  19. 19.
    Kong F, Huang SP, Sun ZM, et al. Se2(B2O7): a new type of second-order NLO material. J Am Chem Soc, 2006, 128: 7750–7751Google Scholar
  20. 20.
    Kong F, Xu X, Mao JG. A series of new ternary and quaternary compounds in the LiI-GaIII-TeIV-O system. Inorg Chem, 2010, 49: 11573–11580Google Scholar
  21. 21.
    Gong YP, Ma YX, Ying SM, et al. Two indium sulfate tellurites: centrosymmetric In2(SO4)(TeO3)(OH)2(H2O) and non-centrosymmetric In3(SO4)(TeO3)2F3(H2O). Inorg Chem, 2019, 58: 11155–11163Google Scholar
  22. 22.
    He F, Wang L, Hu C, et al. Cation-tuned synthesis of the A2SO4. SbF3 (A = Na+, NH4 +, K+, Rb+) family with nonlinear optical properties. Dalton Trans, 2018, 47: 17486–17492Google Scholar
  23. 23.
    Morris RE, Wilkinson AP, Cheetham AK. A novel mixed-valence selenium(IV)/selenium(VI) oxo compound: crystal structure determination and X-ray absorption near edge structure study of erbium selenite(IV) selenate(VI) hydrate, Er(SeO3)(SeO4)1/2·H2O. Inorg Chem, 1992, 31: 4774–4777Google Scholar
  24. 24.
    Weil M. The crystal structures of Hg7Se3O13H2 and Hg8Se4O17H2—two mixed-valent mercury oxoselenium compounds with a multifarious crystal chemistry. Z für Kristallographie-Crystline Mater, 2004, 219: 621–629Google Scholar
  25. 25.
    Weil M, Kolitsch U. Hg3Se3O10, a mercury(II) compound with mixed-valence oxoselenium(IV/VI) anions. Acta Cryst, 2002, 58: i47–i49Google Scholar
  26. 26.
    Wickleder MS, Büchner O, Wickleder C, et al. Au2(SeO3)2(SeO4): Synthesis and characterization of a new noncentrosymmetric selenite-selenate. Inorg Chem, 2004, 43: 5860–5864Google Scholar
  27. 27.
    Lee EP, Song SY, Lee DW, et al. New bismuth selenium oxides: syntheses, structures, and characterizations of centrosymmetric Bi2(SeO3)2(SeO4) and Bi2(TeO3)2(SeO4) and noncentrosymmetric Bi(SeO3)(HSeO3). Inorg Chem, 2013, 52: 4097–4103Google Scholar
  28. 28.
    Baran J, Lis T, Marchewka M, et al. Structure and polarized IR and Raman spectra of Na2SeO4·H2SeO3·H2O crystal. J Mol Structure, 1991, 250: 13–45Google Scholar
  29. 29.
    Zak Z. Crystal structure of diselenium pentoxide Se2O5. Z Anorg Allg Chem, 1980, 460: 81–85Google Scholar
  30. 30.
    Giester G. Crystal structure of Li2Cu3(SeO3)2(SeO4)2. Monatshefte für Chemie, 1989, 120: 661–666Google Scholar
  31. 31.
    Effenberger H. Crystal structure and chemical formula of schmiederite, Pb2Cu2(OH)4(SeO3)(SeO4), with a comparison to linarite, PbCu(OH)2(SO4). Miner Petrol, 1987, 36: 3–12Google Scholar
  32. 32.
    Ling J, Albrecht-Schmitt TE. Syntheses, structures, and properties of Ag4(Mo2O5)(SeO4)2(SeO3) and Ag2(MoO3)3SeO3. J Solid State Chem, 2007, 180: 1601–1607Google Scholar
  33. 33.
    Maggard PA, Nault TS, Stern CL, et al. Alignment of acentric MoO3F3 3− anions in a polar material: (Ag3MoO3F3)(Ag3MoO4)Cl. J Solid State Chem, 2003, 175: 27–33Google Scholar
  34. 34.
    Qian Q, Kong F, Mao JG. A series of new silver selenites with d0-TM cations. RSC Adv, 2016, 6: 79681–79687Google Scholar
  35. 35.
    Gong YP, Hu CL, Kong F, et al. Exploration of new birefringent crystals in bismuth d0 transition metal selenites. Chem Eur J, 2019, 25: 3685–3694Google Scholar
  36. 36.
    Wu BL, Hu CL, Mao FF, et al. Highly polarizable Hg2+ induced a strong second harmonic generation signal and large birefringence in LiHgPO4. J Am Chem Soc, 2019, 141: 10188–10192Google Scholar
  37. 37.
    Shi S, Luo M, Lin C, et al. A cation size effect on the framework structures in ABi2SeO3F5 (A = K and Rb): first examples of alkali metal bismuth selenite fluorides. Dalton Trans, 2018, 47: 6598–6604Google Scholar
  38. 38.
    Kurtz SK, Perry TT. A powder technique for the evaluation of nonlinear optical materials. J Appl Phys, 1968, 39: 3798–3813Google Scholar
  39. 39.
    Anonymous. Crystal Clear, version 1.3.5, Rigaku Corp, Woodlands, TX, 1999Google Scholar
  40. 40.
    Sheldrick GM. SHELXTL: crystallographic software package, version 5.1, Bruker-AXS, Madison, WI, 1998Google Scholar
  41. 41.
    Spek AL. Single-crystal structure validation with the program PLATON. J Appl Crystlogr, 2003, 36: 7–13Google Scholar
  42. 42.
    Segall MD, Lindan PJD, Probert MJ, et al. First-principles simulation: ideas, illustrations and the CASTEP code. J Phys-Condens Matter, 2002, 14: 2717–2744Google Scholar
  43. 43.
    Brese NE, O’Keeffe M. Bond-valence parameters for solids. Acta Crystlogr B Struct Sci, 1991, 47: 192–197Google Scholar
  44. 44.
    Brown ID, Altermatt D. Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database. Acta Crystlogr B Struct Sci, 1985, 41: 244–247Google Scholar
  45. 45.
    Zhou Y, Hu CL, Hu T, et al. Explorations of new second-order NLO materials in the AgI-MoVI/WVI-TeIV-O systems. Dalton Trans, 2009, 102: 5747–5754Google Scholar
  46. 46.
    Poe TN, White FD, Proust V, et al. [Ag2M(Te2O5)2]SO4 (M = CeIV or ThIV): A new purely inorganic d/f-heterometallic cationic material. Inorg Chem, 2018, 57: 4816–4819Google Scholar
  47. 47.
    Schmaltz B, Jouaiti A, Hosseini MW, et al. Double stranded interwound infinite linear silver coordination network. Chem Commun, 2001, 14: 1242–1243Google Scholar
  48. 48.
    Lian ZX, Cai J, Chen CH, et al. Linear silver isonicotinamide complex extended by arenedisulfonate via hydrogen bonds and weak Ag⋯O interactions. CrystEngComm, 2007, 9: 319–327Google Scholar
  49. 49.
    Khlobystov AN, Blake AJ, Champness NR, et al. Supramolecular design of one-dimensional coordination polymers based on silver(I) complexes of aromatic nitrogen-donor ligands. Coord Chem Rev, 2001, 222: 155–192Google Scholar
  50. 50.
    Ma YX, Gong YP, Hu C, et al. Three new d10 transition metal selenites containing PO4 tetrahedron: Cd7(HPO4)2(PO4)2(SeO3)2, Cd6(PO4)1.34(SeO3)4.66 and Zn3(HPO4)(SeO3)2(H2O). J Solid State Chem, 2018, 262: 320–326Google Scholar
  51. 51.
    Weil M, Shirkanlou M. Hydrothermal Studies in the system Hg/Se/Te/O: The first TeIV/SeVI oxocompounds Hg3SeTe2O10 and Hg3SeTe4O14, and the Mixed-valent Hg5Se2O8. Z Anorg Allg Chem, 2015, 641: 1459–1466Google Scholar
  52. 52.
    Ina Krügermann, Wickleder MS. Pr4(SeO3)2(SeO4)F6 and NaSm-(SeO3)(SeO4): selenite-selenates of rare earth elements. Z Anorg Allg Chem, 2002, 628: 147–151Google Scholar
  53. 53.
    Weil M. Cd3Se3O10, isotypic with its mercury analogue. Acta Cryst, 2002, 58: i127–i129Google Scholar
  54. 54.
    Wu H, Yu H, Yang Z, et al. Designing a deep-ultraviolet nonlinear optical material with a large second harmonic generation response. J Am Chem Soc, 2013, 135: 4215–4218Google Scholar
  55. 55.
    Mutailipu M, Zhang M, Zhang B, et al. SrB5O7F3 functionalized with [B5O9F3]6− chromophores: accelerating the rational design of deep-ultraviolet nonlinear optical materials. Angew Chem Int Ed, 2018, 57: 6095–6099Google Scholar
  56. 56.
    Gong P, Liang F, Kang L, et al. Recent advances and future perspectives on infrared nonlinear optical metal halides. Coord Chem Rev, 2019, 380: 83–102Google Scholar
  57. 57.
    Xu X, Hu CL, Li BX, et al. α-AgI3O8 and β-AgI3O8 with large SHG responses: polymerization of IO3 groups into the I3O8 polyiodate anion. Chem Mater, 2014, 26: 3219–3230Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xiao-Xue Wang (王晓雪)
    • 1
    • 2
  • Xiao-Bao Li (李小宝)
    • 1
    • 2
  • Chun-Li Hu (胡春丽)
    • 2
  • Fang Kong (孔芳)
    • 2
    Email author
  • Jiang-Gao Mao (毛江高)
    • 2
    Email author
  1. 1.College of ChemistryFuzhou UniversityFuzhouChina
  2. 2.State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouChina

Personalised recommendations