Advertisement

Towards the gemini cation anion exchange membranes by nucleophilic substitution reaction

  • Jianjun Zhang (张建军)
  • Yubin He (贺玉彬)
  • Xian Liang (梁铣)
  • Xiaolin Ge (葛晓琳)
  • Yuan Zhu (祝渊)
  • Min Hu (胡敏)
  • Zhengjin Yang (杨正金)
  • Liang Wu (吴亮)Email author
  • Tongwen Xu (徐铜文)Email author
Articles
  • 18 Downloads

Abstract

As a critical component of alkaline fuel cells, anion exchange membranes determine the energy efficiency, output power density and the long term stability. Recently, the anion exchange membranes with gemini-cation side chains exhibit superior ion conductivity due to their good nanophase separation. However, the costly and complicated synthesis limits their scaling up and commercialization. To address this problem, a convenient synthetic procedure under mild conditions is well developed. A tertiary amine precursor is introduced onto the polymer by the nucleophilic substitution reaction to avoid the conventional chloro/bromo-methylation. Followed by a simple Menshutkin reaction with 6-bromo-N,N,N-trimethylhexan-1-aminium bromide, the polymer electrolytes are obtained in a high yield. The resulting anion exchange membranes with high conductivity, good fuel cell performance and restricted swelling suggest the potential for the application in fuel cell devices.

Keywords

anion exchange membranes fuel cell nucleophilic substitution reaction nano-phase separation 

基于亲核取代反应制备双离子侧链阴离子交换膜

摘要

作为碱性燃料电池的关键组分, 阴离子交换膜决定了其能量转化效率, 输出功率密度及长期稳定性. 最近, 带有双离子侧链的阴离子交换膜, 因其良好的微相分离能力, 表现出了优异的离子电导率. 然而, 昂贵且复杂的合成方法限制了其商业化应用. 为了解决这一问题, 本文开发了一种简单、温和的合成方法. 首先通过亲核取代反应将叔胺前驱体引入到聚合物主链上, 避免了常用的氯/溴甲基化反应. 随后与溴己基-N,N,N-三甲基铵进行简单的门秀金反应, 以高产率获得目标聚合物电解质. 所得到的阴离子交换膜表现出高的离子电导率, 良好的燃料电池性能以及有限的溶胀, 表明所提出的策略在燃料电池中具有应用前景.

Notes

Acknowledgements

This research was supported by the National Natural Science Foundation of China (21720102003, 91534203 and 21522607) and the Fundamental Research Funds for the Central Universities (WK2060190072 and WK2340000066).

Supplementary material

40843_2018_9397_MOESM1_ESM.pdf (182 kb)
Towards the gemini cation anion exchange membranes by nucleophilic substitution reaction

References

  1. 1.
    Zhang H, Shen PK. Advances in the high performance polymer electrolyte membranes for fuel cells. Chem Soc Rev, 2012, 41: 2382–2394CrossRefGoogle Scholar
  2. 2.
    Ran J, Wu L, He Y, et al. Ion exchange membranes: New developments and applications. J Membrane Sci, 2017, 522: 267–291CrossRefGoogle Scholar
  3. 3.
    Zakil FA, Kamarudin SK, Basri S. Modified Nafion membranes for direct alcohol fuel cells: An overview. Renew Sustain Energy Rev, 2016, 65: 841–852CrossRefGoogle Scholar
  4. 4.
    Lu S, Pan J, Huang A, et al. Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts. Proc Natl Acad Sci USA, 2008, 105: 20611–20614CrossRefGoogle Scholar
  5. 5.
    Zakaria Z, Kamarudin SK, Timmiati SN. Membranes for direct ethanol fuel cells: An overview. Appl Energy, 2016, 163: 334–342CrossRefGoogle Scholar
  6. 6.
    Zhang H, Shen PK. Recent development of polymer electrolyte membranes for fuel cells. Chem Rev, 2012, 112: 2780–2832CrossRefGoogle Scholar
  7. 7.
    Chen N, Zhu H, Chu Y, et al. Cobaltocenium-containing polybenzimidazole polymers for alkaline anion exchange membrane applications. Polym Chem, 2016, 8: 1381–1392CrossRefGoogle Scholar
  8. 8.
    Ge X, He Y, Guiver MD, et al. Alkaline anion-exchange membranes containing mobile ion shuttles. Adv Mater, 2016, 28: 3467–3472CrossRefGoogle Scholar
  9. 9.
    Zhao Y, Yu H, Xie F, et al. High durability and hydroxide ion conducting pore-filled anion exchange membranes for alkaline fuel cell applications. J Power Sources, 2014, 269: 1–6CrossRefGoogle Scholar
  10. 10.
    Zhu L, Zimudzi TJ, Li N, et al. Crosslinking of comb-shaped polymer anion exchange membranes via thiol–ene click chemistry. Polym Chem, 2016, 7: 2464–2475CrossRefGoogle Scholar
  11. 11.
    Zhu L, Zimudzi TJ, Wang Y, et al. Mechanically robust anion exchange membranes via long hydrophilic cross-linkers. Macromolecules, 2017, 50: 2329–2337CrossRefGoogle Scholar
  12. 12.
    Li N, Guiver MD. Ion transport by nanochannels in ion-containing aromatic copolymers. Macromolecules, 2014, 47: 2175–2198CrossRefGoogle Scholar
  13. 13.
    Gao L, He G, Pan Y, et al. Poly(2,6-dimethyl-1,4-phenylene oxide) containing imidazolium-terminated long side chains as hydroxide exchange membranes with improved conductivity. J Membrane Sci, 2016, 518: 159–167CrossRefGoogle Scholar
  14. 14.
    Guo D, Lai AN, Lin CX, et al. Imidazolium-functionalized poly (arylene ether sulfone) anion-exchange membranes densely grafted with flexible side chains for fuel cells. ACS Appl Mater Interfaces, 2016, 8: 25279–25288CrossRefGoogle Scholar
  15. 15.
    Lin CX, Huang XL, Guo D, et al. Side-chain-type anion exchange membranes bearing pendant quaternary ammonium groups via flexible spacers for fuel cells. J Mater Chem A, 2016, 4: 13938–13948CrossRefGoogle Scholar
  16. 16.
    Yan X, Gao L, Zheng W, et al. Long-spacer-chain imidazolium functionalized poly(ether ether ketone) as hydroxide exchange membrane for fuel cell. Int J Hydrogen Energy, 2016, 41: 14982–14990CrossRefGoogle Scholar
  17. 17.
    Zhang M, Liu J, Wang Y, et al. Highly stable anion exchange membranes based on quaternized polypropylene. J Mater Chem A, 2015, 3: 12284–12296CrossRefGoogle Scholar
  18. 18.
    Zhang M, Shan C, Liu L, et al. Facilitating anion transport in polyolefin-based anion exchange membranes via bulky side chains. ACS Appl Mater Interfaces, 1944, 8: 23321–23330CrossRefGoogle Scholar
  19. 19.
    Zuo P, Su Y, Li W. Comb-like poly(ether-sulfone) membranes derived from planar 6,12-diaryl-5,11-dihydroindolo[3,2-b]carbazole monomer for alkaline fuel cells. Macromol Rapid Commun, 2016, 37: 1748–1753CrossRefGoogle Scholar
  20. 20.
    Zheng J, Zhang Q, Qian H, et al. Self-assembly prepared anion exchange membranes with high alkaline stability and organic solvent resistance. J Membrane Sci, 2017, 522: 159–167CrossRefGoogle Scholar
  21. 21.
    Yang Z, Zhou J, Wang S, et al. A strategy to construct alkali-stable anion exchange membranes bearing ammonium groups via flexible spacers. J Mater Chem A, 2015, 3: 15015–15019CrossRefGoogle Scholar
  22. 22.
    Dang HS, Weiber EA, Jannasch P. Poly(phenylene oxide) functionalized with quaternary ammonium groups via flexible alkyl spacers for high-performance anion exchange membranes. J Mater Chem A, 2015, 3: 5280–5284CrossRefGoogle Scholar
  23. 23.
    Takaba H, Hisabe T, Shimizu T, et al. Molecular modeling of OH- transport in poly(arylene ether sulfone ketone)s containing quaternized ammonio-substituted fluorenyl groups as anion exchange membranes. J Membrane Sci, 2017, 522: 237–244CrossRefGoogle Scholar
  24. 24.
    Chen Y, Lin Q, Zheng Y, et al. Densely quaternized anion exchange membranes synthesized from Ullmann coupling extension of ionic segments for vanadium redox flow batteries. Sci China Mater, 2019, 62: 211–224CrossRefGoogle Scholar
  25. 25.
    Hu Y, Wang B, Li X, et al. Densely quaternized poly(arylene ether)s with distinct phase separation for highly anion-conductive membranes. J Power Sources, 2018, 387: 33–42CrossRefGoogle Scholar
  26. 26.
    Weiber EA, Jannasch P. Ion distribution in quaternary-ammonium-functionalized aromatic polymers: effects on the ionic clustering and conductivity of anion-exchange membranes. ChemSusChem, 2015, 7: 2621–2630CrossRefGoogle Scholar
  27. 27.
    Zhang W, Qiu X, Ueda M, et al. Synthesis and properties of poly (phenylene-co-arylene ether ketone)s with five quaternary ammonium groups on a phenyl unit for anion-exchange membranes. Solid State Ion, 2018, 314: 187–194CrossRefGoogle Scholar
  28. 28.
    Han J, Zhu L, Pan J, et al. Elastic long-chain multication crosslinked anion exchange membranes. Macromolecules, 2017, 50: 3323–3332CrossRefGoogle Scholar
  29. 29.
    He Y, Zhang J, Liang X, et al. Achieving high anion conductivity by densely grafting of ionic strings. J Membrane Sci, 2018, 559: 35–41CrossRefGoogle Scholar
  30. 30.
    Wang J, Gu S, Xiong R, et al. Structure-property relationships in hydroxide-exchange membranes with cation strings and high ionexchange capacity. ChemSusChem, 2015, 8: 4229–4234CrossRefGoogle Scholar
  31. 31.
    He Y, Si J, Wu L, et al. Dual-cation comb-shaped anion exchange membranes: Structure, morphology and properties. J Membrane Sci, 2016, 515: 189–195CrossRefGoogle Scholar
  32. 32.
    He Y, Wu L, Pan J, et al. A mechanically robust anion exchange membrane with high hydroxide conductivity. J Membrane Sci, 2016, 504: 47–54CrossRefGoogle Scholar
  33. 33.
    He Y, Pan J, Wu L, et al. A novel methodology to synthesize highly conductive anion exchange membranes. Sci Rep, 2015, 5: 13417CrossRefGoogle Scholar
  34. 34.
    Shi Q, Chen P, Zhang X, et al. Synthesis and properties of poly (arylene ether sulfone) anion exchange membranes with pendant benzyl-quaternary ammonium groups. Polymer, 2017, 121: 137–148CrossRefGoogle Scholar
  35. 35.
    Dai J, He G, Ruan X, et al. Constructing a rigid crosslinked structure for enhanced conductivity of imidazolium functionalized polysulfone hydroxide exchange membrane. Int J Hydrogen Energy, 2016, 41: 10923–10934CrossRefGoogle Scholar
  36. 36.
    Puthiyapura VK, Mamlouk M, Pasupathi S, et al. Physical and electrochemical evaluation of ATO supported IrO2 catalyst for proton exchange membrane water electrolyser. J Power Sources, 2014, 269: 451–460CrossRefGoogle Scholar
  37. 37.
    Hnát J, Plevová M, Žitka J, et al. Anion-selective materials with 1,4-diazabicyclo[2.2.2]octane functional groups for advanced alkaline water electrolysis. Electrochim Acta, 2017, 248: 547–555CrossRefGoogle Scholar
  38. 38.
    Largier TD, Cornelius CJ. Random quaternary ammonium Diels-Alder poly(phenylene) copolymers for improved vanadium redox flow batteries. J Power Sources, 2017, 352: 149–155CrossRefGoogle Scholar
  39. 39.
    Yan J, Zhu L, Chaloux BL, et al. Anion exchange membranes by bromination of tetramethylbiphenol-based poly(sulfone)s. Polym Chem, 2017, 8: 2442–2449CrossRefGoogle Scholar
  40. 40.
    He Y, Pan J, Wu L, et al. Facile preparation of 1,8-diazabicyclo [5.4.0]undec-7-ene based High performance anion exchange membranes for diffusion dialysis applications. J Membrane Sci, 2015, 491: 45–52CrossRefGoogle Scholar
  41. 41.
    Zhu Y, He Y, Ge X, et al. A benzyltetramethylimidazolium-based membrane with exceptional alkaline stability in fuel cells: role of its structure in alkaline stability. J Mater Chem A, 2018, 6: 527–534CrossRefGoogle Scholar
  42. 42.
    Xu J, Lin Q, Yu Y, et al. Facile synthesis of fluorinated poly(arylene ether)s with pendant sulfonic acid groups for proton exchange membranes. Int J Hydrogen Energy, 2017, 42: 27100–27110CrossRefGoogle Scholar
  43. 43.
    Chen X, Lü H, Lin Q, et al. Partially fluorinated poly(arylene ether)s bearing long alkyl sulfonate side chains for stable and highly conductive proton exchange membranes. J Membrane Sci, 2018, 549: 12–22CrossRefGoogle Scholar
  44. 44.
    Chen N, Long C, Li Y, et al. A hamburger-structure imidazoliummodified silica/polyphenyl ether composite membrane with enhancing comprehensive performance for anion exchange membrane applications. Electrochim Acta, 2018, 268: 295–303CrossRefGoogle Scholar
  45. 45.
    Chen N, Long C, Li Y, et al. High-performance layered double hydroxide/poly(2,6-dimethyl-1,4-phenylene oxide) membrane with porous sandwich structure for anion exchange membrane fuel cell applications. J Membrane Sci, 2018, 552: 51–60CrossRefGoogle Scholar
  46. 46.
    Zhao Y, Feng L, Gao J, et al. Study on tunable crosslinking anion exchange membranes fabrication and degradation mechanism. Int J Hydrogen Energy, 2016, 41: 16264–16274CrossRefGoogle Scholar
  47. 47.
    Varcoe JR, Atanassov P, Dekel DR, et al. Anion-exchange membranes in electrochemical energy systems. Energy Environ Sci, 2014, 7: 3135–3191CrossRefGoogle Scholar
  48. 48.
    Deavin OI, Murphy S, Ong AL, et al. Anion-exchange membranes for alkaline polymer electrolyte fuel cells: comparison of pendent benzyltrimethylammonium- and benzylmethylimidazolium-headgroups. Energy Environ Sci, 2012, 5: 8584CrossRefGoogle Scholar
  49. 49.
    Hao J, Jiang Y, Gao X, et al. Functionalization of polybenzimidazole-crosslinked poly(vinylbenzyl chloride) with two cyclic quaternary ammonium cations for anion exchange membranes. J Membrane Sci, 2018, 548: 1–10CrossRefGoogle Scholar
  50. 50.
    Sun P, Li Z, Wang S, et al. Performance enhancement of polybenzimidazole based high temperature proton exchange membranes with multifunctional crosslinker and highly sulfonated polyaniline. J Membrane Sci, 2018, 549: 660–669CrossRefGoogle Scholar
  51. 51.
    Pan J, Chen C, Li Y, et al. Constructing ionic highway in alkaline polymer electrolytes. Energy Environ Sci, 2014, 7: 354–360CrossRefGoogle Scholar
  52. 52.
    Li N, Yan T, Li Z, et al. Comb-shaped polymers to enhance hydroxide transport in anion exchange membranes. Energy Environ Sci, 2012, 5: 7888CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jianjun Zhang (张建军)
    • 1
  • Yubin He (贺玉彬)
    • 1
  • Xian Liang (梁铣)
    • 1
  • Xiaolin Ge (葛晓琳)
    • 1
  • Yuan Zhu (祝渊)
    • 1
  • Min Hu (胡敏)
    • 1
  • Zhengjin Yang (杨正金)
    • 1
  • Liang Wu (吴亮)
    • 1
    Email author
  • Tongwen Xu (徐铜文)
    • 1
    Email author
  1. 1.CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Materials ScienceUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations