Hydrophilic perovskite microdisks with excellent stability and strong fluorescence for recyclable temperature sensing

  • Qing Luo (罗清)
  • Hui Wang (王辉)
  • Xiong Yin (殷雄)Email author
  • Leyu Wang (汪乐余)Email author



铯铅卤化物钙钛矿材料因具有优异的光学特性, 近年来受到广泛关注, 但其固有的不稳定性及现有的制备技术阻碍了它们的实际应用. 本文报道了一种大规模绿色合成亲水钙钛矿Cs4PbBr6薄片的方法. 本方法用N,N-二甲基甲酰胺作为可循环使用的溶剂, 所得到的铯 铅卤化物钙钛矿Cs4PbBr6薄片对光、 热及亲水溶剂表现出超高稳定性. 此外, Cs4PbBr6/PDMS复合薄膜在热传感应用方面具有优异的稳定性和再现性. 本研究为制备高稳定性钙钛矿材料提供了有效的参考途径.



This research was supported by the National Natural Science Foundation of China (21725501, 21675009, 21771019 and 21521005) and the Fundamental Research Funds for the Central Universities (buctrc201706, buctrc201812 and buctrc201815). We also thank the support from the Public Hatching Platform for Recruited Talents of Beijing University of Chemical Technology.

Supplementary material

40843_2018_9396_MOESM1_ESM.pdf (1.5 mb)
Hydrophilic Perovskite Microdisks with Excellent Stability and Strong Fluorescence for Recyclable Temperature Sensing


  1. 1.
    Hou Y, Du X, Scheiner S, et al. A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells. Science, 2017, 358: 1192–1197Google Scholar
  2. 2.
    Chen H, Ye F, Tang W, et al. A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules. Nature, 2017, 131: 92–95Google Scholar
  3. 3.
    Xu Z, Yin X, Guo Y, et al. Ru-Doping in TiO2 electron transport layers of planar heterojunction perovskite solar cells for enhanced performance. J Mater Chem C, 2018, 6: 4746–4752Google Scholar
  4. 4.
    Abdi-Jalebi M, Andaji-Garmaroudi Z, Cacovich S, et al. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature, 2018, 555: 497–501Google Scholar
  5. 5.
    Chin XY, Perumal A, Bruno A, et al. Self-assembled hierarchical nanostructured perovskites enable highly efficient LEDs via an energy cascade. Energy Environ Sci, 2018, 11: 1770–1778Google Scholar
  6. 6.
    Ng YF, Kulkarni SA, Parida S, et al. Highly efficient Cs-based perovskite light-emitting diodes enabled by energy funnelling. Chem Commun, 2017, 53: 12004–12007Google Scholar
  7. 7.
    Saidaminov MI, Almutlaq J, Sarmah S, et al. Pure Cs4PbBr6: highly luminescent zero-dimensional perovskite solids. ACS Energy Lett, 2016, 1: 840–845Google Scholar
  8. 8.
    Karl M, Glackin JME, Schubert M, et al. Flexible and ultra-lightweight polymer membrane lasers. Nat Commun, 2018, 9: 1525Google Scholar
  9. 9.
    Chen Q, Wu J, Ou X, et al. All-inorganic perovskite nanocrystal scintillators. Nature, 2018, 561: 88–93Google Scholar
  10. 10.
    Zhao Y, Zhu K. Organic–inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chem Soc Rev, 2016, 45: 655–689Google Scholar
  11. 11.
    Su X, Ma H, Wang H, et al. Surface-enhanced Raman scattering on organic–inorganic hybrid perovskites. Chem Commun, 2018, 54: 2134–2137Google Scholar
  12. 12.
    Chen Y, Yi HT, Wu X, et al. Extended carrier lifetimes and diffusion in hybrid perovskites revealed by hall effect and photoconductivity measurements. Nat Commun, 2016, 7: 12253Google Scholar
  13. 13.
    Lou Y, Fang M, Chen J, et al. Formation of highly luminescent cesium bismuth halide perovskite quantum dots tuned by anion exchange. Chem Commun, 2018, 54: 3779–3782Google Scholar
  14. 14.
    Cho H, Kim YH, Wolf C, et al. Improving the stability of metal halide perovskite materials and light-emitting diodes. Adv Mater, 2018, 30: 1704587Google Scholar
  15. 15.
    Wu Y, Wei Y, Huang Y, et al. Capping CsPbBr3 with ZnO to improve performance and stability of perovskite memristors. Nano Res, 2016, 10: 1584–1594Google Scholar
  16. 16.
    Xue M, Zhou H, Xu Y, et al. High-performance ultraviolet-visible tunable perovskite photodetector based on solar cell structure. Sci China Mater, 2017, 60: 407–414Google Scholar
  17. 17.
    Li X, Xue Z, Luo D, et al. A stable lead halide perovskite nanocrystals protected by PMMA. Sci China Mater, 2018, 61: 363–370Google Scholar
  18. 18.
    Stoeckel MA, Gobbi M, Bonacchi S, et al. Reversible, fast, and wide-range oxygen sensor based on nanostructured organometal halide perovskite. Adv Mater, 2017, 29: 1702469Google Scholar
  19. 19.
    Ummadisingu A, Steier L, Seo JY, et al. The effect of illumination on the formation of metal halide perovskite films. Nature, 2017, 545: 208–212Google Scholar
  20. 20.
    Wang B, Zhang C, Huang S, et al. Postsynthesis phase transformation for CsPbBr3/Rb4PbBr6 core/shell nanocrystals with exceptional photostability. ACS Appl Mater Interfaces, 2018, 10: 23303–23310Google Scholar
  21. 21.
    Tan W, Bowring AR, Meng AC, et al. Thermal stability of mixed cation metal halide perovskites in air. ACS Appl Mater Interfaces, 2018, 10: 5485–5491Google Scholar
  22. 22.
    Li X, Wang Y, Sun H, et al. Amino-mediated anchoring perovskite quantum dots for stable and low-threshold random lasing. Adv Mater, 2017, 29: 1701185Google Scholar
  23. 23.
    Wang H, Yin X, Wang L. Highly stable perovskite nanogels as inks for multicolor luminescent authentication applications. J Mater Chem C, 2018, 6: 11569–11574Google Scholar
  24. 24.
    Li Y, Wang Y, Zhang T, et al. Li dopant induces moisture sensitive phase degradation of an all-inorganic CsPbI2Br perovskite. Chem Commun, 2018, 54: 9809–9812Google Scholar
  25. 25.
    Correa-Baena JP, Saliba M, Buonassisi T, et al. Promises and challenges of perovskite solar cells. Science, 2017, 358: 739–744Google Scholar
  26. 26.
    Rong Y, Hu Y, Mei A, et al. Challenges for commercializing perovskite solar cells. Science, 2018, 361: eaat8235Google Scholar
  27. 27.
    Nishikubo R, Tohnai N, Hisaki I, et al. Thermoresponsive emission switching via lower critical solution temperature behavior of organic-inorganic perovskite nanoparticles. Adv Mater, 2017, 29: 1700047Google Scholar
  28. 28.
    Smock SR, Williams TJ, Brutchey RL. Quantifying the thermodynamics of ligand binding to CsPbBr3 quantum dots. Angew Chem Int Ed, 2018, 57: 11711–11715Google Scholar
  29. 29.
    Song J, Li J, Li X, et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv Mater, 2016, 27: 7162–7167Google Scholar
  30. 30.
    Chen X, Peng L, Huang K, et al. Non-injection gram-scale synthesis of cesium lead halide perovskite quantum dots with controllable size and composition. Nano Res, 2016, 9: 1994–2006Google Scholar
  31. 31.
    Yang P, Liu G, Liu B, et al. All-inorganic Cs2CuX4 (X=Cl, Br, and Br/I) perovskite quantum dots with blue-green luminescence. Chem Commun, 2018, 54: 11638–11641Google Scholar
  32. 32.
    Zhou L, Liao JF, Huang ZG, et al. All-inorganic lead-free Cs2PdX6 (X=Br, I) perovskite nanocrystals with single unit cell thickness and high stability. ACS Energy Lett, 2018, 3: 2613–2619Google Scholar
  33. 33.
    Zhou L, Xu YF, Chen BX, et al. Synthesis and photocatalytic application of stable lead-free Cs2AgBiBr6 perovskite nanocrystals. Small, 2018, 14: 1703762Google Scholar
  34. 34.
    Protesescu L, Yakunin S, Bodnarchuk MI, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X=Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett, 2016, 15: 3692–3696Google Scholar
  35. 35.
    Zhang D, Eaton SW, Yu Y, et al. Solution-phase synthesis of cesium lead halide perovskite nanowires. J Am Chem Soc, 2015, 137: 9230–9233Google Scholar
  36. 36.
    Nedelcu G, Protesescu L, Yakunin S, et al. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X=Cl, Br, I). Nano Lett, 2015, 15: 5635–5640Google Scholar
  37. 37.
    Xu W, Cai Z, Li F, et al. Embedding lead halide perovskite quantum dots in carboxybenzene microcrystals improves stability. Nano Res, 2017, 10: 2692–2698Google Scholar
  38. 38.
    McLaurin EJ, Bradshaw LR, Gamelin DR. Dual-emitting nanoscale temperature sensors. Chem Mater, 2013, 25: 1283–1292Google Scholar
  39. 39.
    Wang X, Wolfbeis OS, Meier RJ. Luminescent probes and sensors for temperature. Chem Soc Rev, 2013, 42: 7834–7869Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Chemical Resource Engineering, Innovation Centre for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijingChina

Personalised recommendations